Published on in Vol 10, No 6 (2022): June

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/35307, first published .
Predicting 30-Day Readmission Risk for Patients With Chronic Obstructive Pulmonary Disease Through a Federated Machine Learning Architecture on Findable, Accessible, Interoperable, and Reusable (FAIR) Data: Development and Validation Study

Predicting 30-Day Readmission Risk for Patients With Chronic Obstructive Pulmonary Disease Through a Federated Machine Learning Architecture on Findable, Accessible, Interoperable, and Reusable (FAIR) Data: Development and Validation Study

Predicting 30-Day Readmission Risk for Patients With Chronic Obstructive Pulmonary Disease Through a Federated Machine Learning Architecture on Findable, Accessible, Interoperable, and Reusable (FAIR) Data: Development and Validation Study

Journals

  1. Alvarez-Romero C, Martínez-García A, Sinaci A, Gencturk M, Méndez E, Hernández-Pérez T, Liperoti R, Angioletti C, Löbe M, Ganapathy N, Deserno T, Almada M, Costa E, Chronaki C, Cangioli G, Cornet R, Poblador-Plou B, Carmona-Pírez J, Gimeno-Miguel A, Poncel-Falcó A, Prados-Torres A, Kovacevic T, Zaric B, Bokan D, Hromis S, Djekic Malbasa J, Rapallo Fernández C, Velázquez Fernández T, Rochat J, Gaudet-Blavignac C, Lovis C, Weber P, Quintero M, Perez-Perez M, Ashley K, Horton L, Parra Calderón C. FAIR4Health: Findable, Accessible, Interoperable and Reusable data to foster Health Research. Open Research Europe 2022;2:34 View
  2. Martínez-García A, Alvarez-Romero C, Román-Villarán E, Bernabeu-Wittel M, Luis Parra-Calderón C. FAIR principles to improve the impact on health research management outcomes. Heliyon 2023;9(5):e15733 View
  3. Eminaga O, Lee T, Ge J, Shkolyar E, Laurie M, Long J, Hockman L, Liao J. Conceptual framework and documentation standards of cystoscopic media content for artificial intelligence. Journal of Biomedical Informatics 2023;142:104369 View
  4. Sinaci A, Gencturk M, Alvarez-Romero C, Laleci Erturkmen G, Martinez-Garcia A, Escalona-Cuaresma M, Parra-Calderon C. Privacy-preserving federated machine learning on FAIR health data: A real-world application. Computational and Structural Biotechnology Journal 2024;24:136 View
  5. Cole N, Kormann E, Klebel T, Apartis S, Ross-Hellauer T. The societal impact of Open Science: a scoping review. Royal Society Open Science 2024;11(6) View
  6. Eradat Oskoui S, Retford M, Forde E, Barnes R, J Hunter K, Wozencraft A, Thompson S, Orton C, Ford D, Heys S, Kennedy J, McNerney C, Peng J, Ghanbariadolat H, Rees S, H Mulholland R, Sheikh A, Burgner D, Brockway M, B. Azad M, Rodriguez N, Zoega H, J Stock S, Calvert C, E Miller J, Fiorentino N, Racine A, Haggstrom J, Postlethwaite N. Developing a prototype for federated analysis to enhance privacy and enable trustworthy access to COVID-19 research data. International Journal of Medical Informatics 2025;195:105708 View
  7. Li N, Lewin A, Ning S, Waito M, Zeller M, Tinmouth A, Shih A. Privacy‐preserving federated data access and federated learning: Improved data sharing and AI model development in transfusion medicine. Transfusion 2024 View