Published on in Vol 10, No 6 (2022): June

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/35307, first published .
Predicting 30-Day Readmission Risk for Patients With Chronic Obstructive Pulmonary Disease Through a Federated Machine Learning Architecture on Findable, Accessible, Interoperable, and Reusable (FAIR) Data: Development and Validation Study

Predicting 30-Day Readmission Risk for Patients With Chronic Obstructive Pulmonary Disease Through a Federated Machine Learning Architecture on Findable, Accessible, Interoperable, and Reusable (FAIR) Data: Development and Validation Study

Predicting 30-Day Readmission Risk for Patients With Chronic Obstructive Pulmonary Disease Through a Federated Machine Learning Architecture on Findable, Accessible, Interoperable, and Reusable (FAIR) Data: Development and Validation Study

Celia Alvarez-Romero   1 , MSc ;   Alicia Martinez-Garcia   1 , PhD ;   Jara Ternero Vega   2 , MSc ;   Pablo Díaz-Jimènez   2 , MSc ;   Carlos Jimènez-Juan   2 , MSc ;   María Dolores Nieto-Martín   2 , PhD ;   Esther Román Villarán   1 , MSc ;   Tomi Kovacevic   3, 4 , PhD ;   Darijo Bokan   3 , PhD ;   Sanja Hromis   3, 4 , PhD ;   Jelena Djekic Malbasa   3, 4 , PhD ;   Suzana Beslać   3 , MD ;   Bojan Zaric   3, 4 , PhD ;   Mert Gencturk   5 , MSc ;   A Anil Sinaci   5 , PhD ;   Manuel Ollero Baturone   2 , PhD ;   Carlos Luis Parra Calderón   1 , MSc

1 Computational Health Informatics Group, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain

2 Internal Medicine Department, Virgen del Rocío University Hospital, Seville, Spain

3 Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, RS

4 Medical Faculty, University of Novi Sad, Novi Sad, RS

5 Software Research & Development and Consultancy Corporation, Ankara, Turkey

Corresponding Author:

  • Celia Alvarez-Romero, MSc
  • Computational Health Informatics Group
  • Institute of Biomedicine of Seville, Virgen del Rocío University Hospital
  • Consejo Superior de Investigaciones Científicas, University of Seville
  • Avda Manuel Siurot s/n
  • Seville
  • Spain
  • Phone: 34 955013313
  • Email: celia.alvarez@juntadeandalucia.es