JMIR Medical Informatics
Clinical informatics, decision support for health professionals, electronic health records, and eHealth infrastructures.
Editor-in-Chief:
Christian Lovis, MD, MPH, FACMI, Division of Medical Information Sciences, University Hospitals of Geneva (HUG), University of Geneva (UNIGE), Switzerland
Impact Factor 3.1 CiteScore 7.9
Recent Articles
The increasing demand for personal health record (PHR) systems is driven by individuals’ desire to actively manage their healthcare. However, the limited functionality of current PHR systems has affected users’ willingness to adopt them, leading to lower-than-expected usage rates. The HL7 Personal Health Record System Functional Model (PHR-S FM) was proposed to address this issue, outlining all possible functionalities in PHR systems. Although the PHR-S FM provides a comprehensive theoretical framework, its practical effectiveness and applicability have not been fully explored.
Over 200 health information exchanges (HIEs) are currently operational in Japan. The feature for remote on-demand viewing, or searching for aggregated patient health data from multiple institutions is the most common. However, the usage of this feature by individual users and institutions remains unknown.
Large language models (LLMs) have substantially advanced natural language processing (NLP) capabilities but often struggle with knowledge-driven tasks in specialized domains such as biomedicine. Integrating biomedical knowledge sources such as SNOMED CT into LLMs may enhance their performance on biomedical tasks. However, the methodologies and effectiveness of incorporating SNOMED CT into LLMs have not been systematically reviewed.
Generative artificial intelligence (GAI) systems by Google have recently been updated from Bard to Gemini and Gemini Advanced as of December 2023. Gemini is a basic, free-to-use model after a user’s login, while Gemini Advanced operates on a more advanced model requiring a fee-based subscription. These systems have the potential to enhance medical diagnostics. However, the impact of these updates on comprehensive diagnostic accuracy remains unknown.
Electronic health records (EHRs) are increasingly used for epidemiologic research to advance public health practice. However, key variables are susceptible to missing data or misclassification within EHRs, including demographic information or disease status, which could affect estimation of disease prevalence or risk factor associations.
Electronic Medical Records (EMRs) store extensive patient data and serve as a comprehensive repository, including textual medical records like surgical and imaging reports. Their utility in Clinical Decision Support Systems (CDSS) is significant, but the widespread use of ambiguous and unstandardized abbreviations in clinical documents poses challenges for Natural Language Processing (NLP) in CDSS. Efficient abbreviation disambiguation methods are needed for effective information extraction.
Electronic medical record (EMR) systems are essential in health care for collecting and storing patient medical data. They provide critical information to doctors and caregivers, facilitating improved decision-making and patient care. Despite their significance, optimizing EMR systems is crucial for enhancing health care quality. Implementing the Observational Medical Outcomes Partnership (OMOP) shared data model represents a promising approach to improve EMR performance and overall health care outcomes.
The World Health Organization (WHO) reported that cardiovascular diseases (CVDs) are the leading cause of death worldwide. CVDs are chronic, with complex progression patterns involving episodes of comorbidities and multimorbidities. When dealing with chronic diseases, physicians often adopt a “watchful waiting” strategy, and actions are postponed until information is available. Population-level transition probabilities and progression patterns can be revealed by applying time-variant stochastic modeling methods to longitudinal patient data from cohort studies. Inputs from CVD practitioners indicate that tools to generate and visualize cohort transition patterns have many impactful clinical applications. The resultant computational model can be embedded in digital decision support tools for clinicians. However, to date, no study has attempted to accomplish this for CVDs.
Natural language processing (NLP) techniques can be used to analyze large amounts of electronic health record texts, which encompasses various types of patient information such as quality of life, effectiveness of treatments, and adverse drug event (ADE) signals. As different aspects of a patient’s status are stored in different types of documents, we propose an NLP system capable of processing 6 types of documents: physician progress notes, discharge summaries, radiology reports, radioisotope reports, nursing records, and pharmacist progress notes.
Data models are crucial for clinical research as they enable researchers to fully use the vast amount of clinical data stored in medical systems. Standardized data and well-defined relationships between data points are necessary to guarantee semantic interoperability. Using the Fast Healthcare Interoperability Resources (FHIR) standard for clinical data representation would be a practical methodology to enhance and accelerate interoperability and data availability for research.
Preprints Open for Peer-Review
Open Peer Review Period:
-
Open Peer Review Period:
-
Open Peer Review Period:
-