JMIR Medical Informatics

Clinical informatics, decision support for health professionals, electronic health records, and ehealth infrastructures

Editor-in-Chief:

Christian Lovis, MD, MPH, FACMI, Division of Medical Information Sciences, University Hospitals of Geneva (HUG), University of Geneva (UNIGE), Switzerland


Impact Factor 2.96

JMIR Medical Informatics (JMI, ISSN 2291-9694; Impact Factor: 2.96) (Editor-in-chief: Christian Lovis MD MPH FACMI) is a PubMed/SCIE-indexed journal that focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. In June 2021, the journal received an impact factor of 2.96. 

Published by JMIR Publications, JMIR Medical Informatics has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.

JMIR Medical Informatics adheres to rigorous quality standards, involving a rapid and thorough peer-review process, professional copyediting, professional production of PDF, XHTML, and XML proofs (ready for deposit in PubMed Central/PubMed).

Recent Articles

Article Thumbnail
Theme Issue 2020-2021: Medical Informatics and COVID-19

Since the COVID-19 outbreak, South Korea has been engaged in various efforts to overcome the pandemic. One of them is to provide app-based COVID-19–related services to the public. As the pandemic continues, a need for various apps has emerged, including COVID-19 apps that can support activities aimed at overcoming the COVID-19 pandemic.

|
Article Thumbnail
Theme Issue 2020-2021: Medical Informatics and COVID-19

Since March 2020, companies nationwide have started work from home (WFH) owing to the rapid increase of confirmed COVID-19 cases in an attempt to help prevent the disease from spreading and to rescue the economy from the pandemic. Many organizations have conducted surveys to understand people’s opinions toward WFH. However, the findings are limited owing to a small sample size and the dynamic topics over time.

|
Article Thumbnail
Secondary Use of Clinical Data for Research and Surveillance

Rheumatic diseases are one of the most common chronic diseases worldwide. Among them, spondyloarthritis (SpA) is a group of highly debilitating diseases, with an early onset age, which significantly impacts patients’ quality of life, health care systems, and society in general. Recent treatment options consist of using biologic therapies, and establishing the most beneficial option according to the patients’ characteristics is a challenge that needs to be overcome. Meanwhile, the emerging availability of electronic medical records has made necessary the development of methods that can extract insightful information while handling all the challenges of dealing with complex, real-world data.

|
Article Thumbnail
Standards and Interoperability

Information technology has shifted paper-based documentation in the health care sector into a digital form, in which patient information is transferred electronically from one place to another. However, there remain challenges and issues to resolve in this domain owing to the lack of proper standards, the growth of new technologies (mobile devices, tablets, ubiquitous computing), and health care providers who are reluctant to share patient information. Therefore, a solid systematic literature review was performed to understand the use of this new technology in the health care sector. To the best of our knowledge, there is a lack of comprehensive systematic literature reviews that focus on Fast Health Interoperability Resources (FHIR)-based electronic health records (EHRs). In addition, FHIR is the latest standard, which is in an infancy stage of development. Therefore, this is a hot research topic with great potential for further research in this domain.

|
Article Thumbnail
Machine Learning

Pill image recognition systems are difficult to develop due to differences in pill color, which are influenced by external factors such as the illumination from and the presence of a flash.

|
Article Thumbnail
Decision Support for Health Professionals

Unscheduled emergency department return visits (EDRVs) are key indicators for monitoring the quality of emergency medical care. A high return rate implies that the medical services provided by the emergency department (ED) failed to achieve the expected results of accurate diagnosis and effective treatment. Older adults are more susceptible to diseases and comorbidities than younger adults, and they exhibit unique and complex clinical characteristics that increase the difficulty of clinical diagnosis and treatment. Older adults also use more emergency medical resources than people in other age groups. Many studies have reviewed the causes of EDRVs among general ED patients; however, few have focused on older adults, although this is the age group with the highest rate of EDRVs.

|
Article Thumbnail
Machine Learning

Anastomotic leakage (AL) is one of the severe postoperative adverse events (5%-30%), and it is related to increased medical costs in cancer patients who undergo esophagectomies. Machine learning (ML) methods show good performance at predicting risk for AL. However, AL risk prediction based on ML models among the Chinese population is unavailable.

|
Article Thumbnail
Theme Issue 2020-2021: Medical Informatics and COVID-19

During pandemics, acquiring outpatients’ travel, occupation, contact, and cluster histories is one of the most important measures in assessing the disease risk among incoming patients. Previous means of acquiring this information in the examination room have been insufficient in preventing disease spread.

|
Article Thumbnail
Machine Learning

Appropriate empirical treatment for candidemia is associated with reduced mortality; however, the timely diagnosis of candidemia in patients with sepsis remains poor.

|
Article Thumbnail
Machine Learning

Delirium frequently occurs among patients admitted to the intensive care unit (ICU). There is limited evidence to support interventions to treat or resolve delirium in patients who have already developed delirium. Therefore, the early recognition and prevention of delirium are important in the management of critically ill patients.

|
Article Thumbnail
Machine Learning

Delirium frequently occurs among patients admitted to the intensive care unit (ICU). There is limited evidence to support interventions to treat or resolve delirium in patients who have already developed delirium. Therefore, the early recognition and prevention of delirium are important in the management of critically ill patients.

|
Article Thumbnail
Machine Learning

The secondary use of structured electronic medical record (sEMR) data has become a challenge due to the diversity, sparsity, and high dimensionality of the data representation. Constructing an effective representation for sEMR data is becoming more and more crucial for subsequent data applications.

|

Preprints Open for Peer-Review

We are working in partnership with