JMIR Medical Informatics

Clinical informatics, decision support for health professionals, electronic health records, and ehealth infrastructures

Editor-in-Chief:

Christian Lovis, MD, MPH, FACMI, Division of Medical Information Sciences, University Hospitals of Geneva (HUG), University of Geneva (UNIGE), Switzerland


Impact Factor 2.58

JMIR Medical Informatics (JMI, ISSN 2291-9694; Impact Factor: 2.58) (Editor-in-chief: Christian Lovis MD MPH FACMI) is a PubMed/SCIE-indexed journal that focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. In June 2020, the journal received an impact factor of 2.58. 

Published by JMIR Publications, JMIR Medical Informatics has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.

JMIR Medical Informatics adheres to rigorous quality standards, involving a rapid and thorough peer-review process, professional copyediting, professional production of PDF, XHTML, and XML proofs (ready for deposit in PubMed Central/PubMed).

Recent Articles

Article Thumbnail
Machine Learning

Without timely diagnosis and treatment, tachycardia, also called tachyarrhythmia, can cause serious complications such as heart failure, cardiac arrest, and even death. The predictive performance of conventional clinical diagnostic procedures needs improvement in order to assist physicians in detecting risk early on.

|
Article Thumbnail
Consumer Health Informatics Innovations

Obesity and overweight are a serious health problem worldwide with multiple and connected causes. Simultaneously, chatbots are becoming increasingly popular as a way to interact with users in mobile health apps.

|
Article Thumbnail
Decision Support for Health Professionals

Suicide is a serious public health issue, accounting for 1.4% of all deaths worldwide. Current risk assessment tools are reported as performing little better than chance in predicting suicide. New methods for studying dynamic features in electronic health records (EHRs) are being increasingly explored. One avenue of research involves using sentiment analysis to examine clinicians’ subjective judgments when reporting on patients. Several recent studies have used general-purpose sentiment analysis tools to automatically identify negative and positive words within EHRs to test correlations between sentiment extracted from the texts and specific medical outcomes (eg, risk of suicide or in-hospital mortality). However, little attention has been paid to analyzing the specific words identified by general-purpose sentiment lexicons when applied to EHR corpora.

|
Article Thumbnail
Theme Issue 2020-2021: Medical Informatics and COVID-19

Accurate prediction of the disease severity of patients with COVID-19 would greatly improve care delivery and resource allocation and thereby reduce mortality risks, especially in less developed countries. Many patient-related factors, such as pre-existing comorbidities, affect disease severity and can be used to aid this prediction.

|
Article Thumbnail
Theme Issue 2020-2021: Medical Informatics and COVID-19

In the context of the COVID-19 outbreak, 80% of the persons who are infected have mild symptoms and are required to self-recover at home. They have a strong demand for remote health care that, despite the great potential of artificial intelligence (AI), is not met by the current services of eHealth. Understanding the real needs of these persons is lacking.

|
Article Thumbnail
Natural Language Processing

Shortage of human resources, increasing educational costs, and the need to keep social distances in response to the COVID-19 worldwide outbreak have prompted the necessity of clinical training methods designed for distance learning. Virtual patient simulators (VPSs) may partially meet these needs. Natural language processing (NLP) and intelligent tutoring systems (ITSs) may further enhance the educational impact of these simulators.

|
Article Thumbnail
Theme Issue 2020: Medical Artificial Intelligence Applications in China

Big data technology provides unlimited potential for efficient storage, processing, querying, and analysis of medical data. Technologies such as deep learning and machine learning simulate human thinking, assist physicians in diagnosis and treatment, provide personalized health care services, and promote the use of intelligent processes in health care applications.

|
Article Thumbnail
Decision Support for Health Professionals

In the United States, about 3 million people have autism spectrum disorder (ASD), and around 1 out of 59 children are diagnosed with ASD. People with ASD have characteristic social communication deficits and repetitive behaviors. The causes of this disorder remain unknown; however, in up to 25% of cases, a genetic cause can be identified. Detecting ASD as early as possible is desirable because early detection of ASD enables timely interventions in children with ASD. Identification of ASD based on objective pathogenic mutation screening is the major first step toward early intervention and effective treatment of affected children.

|
Article Thumbnail
Tools, Programs and Algorithms

Accurate and rapid clinical decisions based on real-world evidence are essential for patients with cancer. However, the complexity of chemotherapy regimens for cancer impedes retrospective research that uses observational health databases.

|
Article Thumbnail
Secondary Use of Clinical Data for Research and Surveillance

The spread of SARS-CoV-2, originating in Wuhan, China, was classified as a pandemic by the World Health Organization on March 11, 2020. The governments of affected countries have implemented various measures to limit the spread of the virus. The starting point of this paper is the different government approaches, in terms of promulgating new legislative regulations to limit the virus diffusion and to contain negative effects on the populations.

|
Article Thumbnail
Natural Language Processing

The COVID-19 pandemic has caused a global health crisis that affects many aspects of human lives. In the absence of vaccines and antivirals, several behavioral change and policy initiatives such as physical distancing have been implemented to control the spread of COVID-19. Social media data can reveal public perceptions toward how governments and health agencies worldwide are handling the pandemic, and the impact of the disease on people regardless of their geographic locations in line with various factors that hinder or facilitate the efforts to control the spread of the pandemic globally.

|
Article Thumbnail
Theme Issue 2020-2021: Medical Informatics and COVID-19

SARS-CoV-2 is straining health care systems globally. The burden on hospitals during the pandemic could be reduced by implementing prediction models that can discriminate patients who require hospitalization from those who do not. The COVID-19 vulnerability (C-19) index, a model that predicts which patients will be admitted to hospital for treatment of pneumonia or pneumonia proxies, has been developed and proposed as a valuable tool for decision-making during the pandemic. However, the model is at high risk of bias according to the “prediction model risk of bias assessment” criteria, and it has not been externally validated.

|

We are working in partnership with