JMIR Medical Informatics

Clinical informatics, decision support for health professionals, electronic health records, and ehealth infrastructures

Editor-in-Chief:

Christian Lovis, MD, MPH, FACMI, Division of Medical Information Sciences, University Hospitals of Geneva (HUG), University of Geneva (UNIGE), Switzerland


Impact Factor 2.58

JMIR Medical Informatics (JMI, ISSN 2291-9694; Impact Factor: 2.58) (Editor-in-chief: Christian Lovis MD MPH FACMI) is a PubMed/SCIE-indexed journal that focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. In June 2020, the journal received an impact factor of 2.58. 

Published by JMIR Publications, JMIR Medical Informatics has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.

JMIR Medical Informatics adheres to rigorous quality standards, involving a rapid and thorough peer-review process, professional copyediting, professional production of PDF, XHTML, and XML proofs (ready for deposit in PubMed Central/PubMed).

Recent Articles

Article Thumbnail
Machine Learning

Diabetic kidney disease (DKD) is one of the most crucial causes of chronic kidney disease (CKD). However, the efficacy and biomedical mechanisms of Chinese herbal medicine (CHM) for DKD in clinical settings remain unclear.

|
Article Thumbnail
Machine Learning

Though shock wave lithotripsy (SWL) has developed to be one of the most common treatment approaches for nephrolithiasis in recent decades, its treatment planning is often a trial-and-error process based on physicians’ subjective judgement. Physicians’ inexperience with this modality can lead to low-quality treatment and unnecessary risks to patients.

|
Article Thumbnail
Secondary Use of Clinical Data for Research and Surveillance

Hospital patient registries provide substantial longitudinal data sets describing the clinical and medical health statuses of inpatients and their pharmacological prescriptions. Despite the multiple advantages of routinely collecting multidimensional longitudinal data, those data sets are rarely suitable for advanced statistical analysis and they require customization and synthesis.

|
Article Thumbnail
Decision Support for Health Professionals

Data-driven medical health information processing has become a new development trend in obstetrics. Electronic medical records (EMRs) are the basis of evidence-based medicine and an important information source for intelligent diagnosis. To obtain diagnostic results, doctors combine clinical experience and medical knowledge in their diagnosis process. External medical knowledge provides strong support for diagnosis. Therefore, it is worth studying how to make full use of EMRs and medical knowledge in intelligent diagnosis.

|
Article Thumbnail
Tools, Programs and Algorithms

Statistical analysis, which has become an integral part of evidence-based medicine, relies heavily on data quality that is of critical importance in modern clinical research. Input data are not only at risk of being falsified or fabricated, but also at risk of being mishandled by investigators.

|
Article Thumbnail
Theme Issue 2021: Health Natural Language Processing and Applications

Improving the understandability of health information can significantly increase the cost-effectiveness and efficiency of health education programs for vulnerable populations. There is a pressing need to develop clinically informed computerized tools to enable rapid, reliable assessment of the linguistic understandability of specialized health and medical education resources. This paper fills a critical gap in current patient-oriented health resource development, which requires reliable and accurate evaluation instruments to increase the efficiency and cost-effectiveness of health education resource evaluation.

|
Article Thumbnail
Natural Language Processing

Drug prescriptions are often recorded in free-text clinical narratives; making this information available in a structured form is important to support many health-related tasks. Although several natural language processing (NLP) methods have been proposed to extract such information, many challenges remain.

|
Article Thumbnail
Machine Learning

Patient monitoring is vital in all stages of care. In particular, intensive care unit (ICU) patient monitoring has the potential to reduce complications and morbidity, and to increase the quality of care by enabling hospitals to deliver higher-quality, cost-effective patient care, and improve the quality of medical services in the ICU.

|
Article Thumbnail
Natural Language Processing

Diagnostic neurovascular imaging data are important in stroke research, but obtaining these data typically requires laborious manual chart reviews.

|
Article Thumbnail
Theme Issue 2020:National NLP Clinical Challenges/Open Health Natural Language Processing 2019 Challenge Selected Papers

The prognosis, diagnosis, and treatment of many genetic disorders and familial diseases significantly improve if the family history (FH) of a patient is known. Such information is often written in the free text of clinical notes.

|
Article Thumbnail
Theme Issue 2020-2021: Medical Informatics and COVID-19

In 2020, COVID-19 has claimed more than 300,000 deaths in the United States alone. Although nonpharmaceutical interventions were implemented by federal and state governments in the United States, these efforts have failed to contain the virus. Following the Food and Drug Administration's approval of two COVID-19 vaccines, however, the hope for the return to normalcy has been renewed. This hope rests on an unprecedented nationwide vaccine campaign, which faces many logistical challenges and is also contingent on several factors whose values are currently unknown.

|
Article Thumbnail
Theme Issue 2020-2021: Medical Informatics and COVID-19

The COVID-19 outbreak has spread rapidly and hospitals are overwhelmed with COVID-19 patients. While analysis of nasal and throat swabs from patients is the main way to detect COVID-19, analyzing chest images could offer an alternative method to hospitals, where health care personnel and testing kits are scarce. Deep learning (DL), in particular, has shown impressive levels of performance when analyzing medical images, including those related to COVID-19 pneumonia.

|

Preprints Open for Peer-Review

|

Open Peer Review Period:

-

|

Open Peer Review Period:

-

We are working in partnership with