JMIR Medical Informatics

Clinical informatics, decision support for health professionals, electronic health records, and eHealth infrastructures

Editor-in-Chief:

Christian Lovis, MD, MPH, FACMI, Division of Medical Information Sciences, University Hospitals of Geneva (HUG), University of Geneva (UNIGE), Switzerland


Impact Factor 3.23

JMIR Medical Informatics (JMI, ISSN 2291-9694; Impact Factor: 3.23) (Editor-in-chief: Christian Lovis, MD, MPH, FACMI) is an open-access PubMed/SCIE-indexed journal that focuses on the challenges and impacts of clinical informatics, digitalization of care processes, clinical and health data pipelines from acquisition to reuse, including: semantics, natural language processing, natural interactions, meaningful analytics and decision support, electronic health records, infrastructures, implementation, and evaluation (see Focus and Scope).

JMIR Medical Informatics adheres to rigorous quality standards, involving a rapid and thorough peer-review process, professional copyediting, and professional production of PDF, XHTML, and XML proofs. The journal is indexed in PubMed, PubMed Central, DOAJ, SCOPUS, and SCIE (Clarivate). In 2022, JMI received a Journal Impact Factor™ of 3.23 (5-Year Journal Impact Factor: 3.56) (Source: Journal Citation Reports™ from Clarivate, 2022).

Recent Articles

Article Thumbnail
Imaging Informatics

Due to the importance of radiologic examinations, such as X-rays or computed tomography scans, for many clinical diagnoses, the optimal use of the radiology department is 1 of the primary goals of many hospitals.

|
Article Thumbnail
Viewpoints on and Experiences with Digital Technologies in Health

Smart cities and digital public health are closely related. Managing digital transformation in urbanization and living spaces is challenging. It is critical to prioritize the emotional and physical health and well-being of humans and their animals in the dynamic and ever-changing environment they share. Human-animal bonds are continuous as they live together or share urban spaces and have a mutual impact on each other’s health as well as the surrounding environment. In addition, sensors embedded in the Internet of Things are everywhere in smart cities. They monitor events and provide appropriate responses. In this regard, accident and emergency informatics (A&EI) offers tools to identify and manage overtime hazards and disruptive events. Such manifold focuses fit with One Digital Health (ODH), which aims to transform health ecosystems with digital technology by proposing a comprehensive framework to manage data and support health-oriented policies. We showed and discussed how, by developing the concept of ODH intervention, the ODH framework can support the comprehensive monitoring and analysis of daily life events of humans and animals in technologically integrated environments such as smart homes and smart cities. We developed an ODH intervention use case in which A&EI mechanisms run in the background. The ODH framework structures the related data collection and analysis to enhance the understanding of human, animal, and environment interactions and associated outcomes. The use case looks at the daily journey of Tracy, a healthy woman aged 27 years, and her dog Mego. Using medical Internet of Things, their activities are continuously monitored and analyzed to prevent or manage any kind of health-related abnormality. We reported and commented on an ODH intervention as an example of a real-life ODH implementation. We gave the reader examples of a “how-to” analysis of Tracy and Mego’s daily life activities as part of a timely implementation of the ODH framework. For each activity, relationships to the ODH dimensions were scored, and relevant technical fields were evaluated in light of the Findable, Accessible, Interoperable, and Reusable principles. This “how-to” can be used as a template for further analyses. An ODH intervention is based on Findable, Accessible, Interoperable, and Reusable data and real-time processing for global health monitoring, emergency management, and research. The data should be collected and analyzed continuously in a spatial-temporal domain to detect changes in behavior, trends, and emergencies. The information periodically gathered should serve human, animal, and environmental health interventions by providing professionals and caregivers with inputs and “how-to's” to improve health, welfare, and risk prevention at the individual and population levels. Thus, ODH complementarily combined with A&EI is meant to enhance policies and systems and modernize emergency management.

|
Article Thumbnail
Quality Improvement

Hydroxychloroquine (HCQ) is commonly used for patients with autoimmune conditions. Long-term use of HCQ can cause retinal toxicity, but this risk can be reduced if high doses are avoided.

|
Article Thumbnail
Machine Learning

Clinical electronic medical records (EMRs) contain important information on patients’ anatomy, symptoms, examinations, diagnoses, and medications. Large-scale mining of rich medical information from EMRs will provide notable reference value for medical research. With the complexity of Chinese grammar and blurred boundaries of Chinese words, Chinese clinical named entity recognition (CNER) remains a notable challenge. Follow-up tasks such as medical entity structuring, medical entity standardization, medical entity relationship extraction, and medical knowledge graph construction largely depend on medical named entity recognition effects. A promising CNER result would provide reliable support for building domain knowledge graphs, knowledge bases, and knowledge retrieval systems. Furthermore, it would provide research ideas for scientists and medical decision-making references for doctors and even guide patients on disease and health management. Therefore, obtaining excellent CNER results is essential.

|
Article Thumbnail
Natural Language Processing

Information stored within electronic health records is often recorded as unstructured text. Special computerized natural language processing (NLP) tools are needed to process this text; however, complex governance arrangements make such data in the National Health Service hard to access, and therefore, it is difficult to use for research in improving NLP methods. The creation of a donated databank of clinical free text could provide an important opportunity for researchers to develop NLP methods and tools and may circumvent delays in accessing the data needed to train the models. However, to date, there has been little or no engagement with stakeholders on the acceptability and design considerations of establishing a free-text databank for this purpose.

|
Article Thumbnail
Natural Language Processing

Negation and speculation unrelated to abnormal findings can lead to false-positive alarms for automatic radiology report highlighting or flagging by laboratory information systems.

|
Article Thumbnail
Decision Support for Health Professionals

The clinical narrative in electronic health records (EHRs) carries valuable information for predictive analytics; however, its free-text form is difficult to mine and analyze for clinical decision support (CDS). Large-scale clinical natural language processing (NLP) pipelines have focused on data warehouse applications for retrospective research efforts. There remains a paucity of evidence for implementing NLP pipelines at the bedside for health care delivery.

|
Article Thumbnail
Secondary Use of Clinical Data for Research and Surveillance

Approaches to addressing unwarranted variation in health care service delivery have traditionally relied on the prospective identification of activities and outcomes, based on a hypothesis, with subsequent reporting against defined measures. Practice-level prescribing data in England are made publicly available by the National Health Service (NHS) Business Services Authority for all general practices. There is an opportunity to adopt a more data-driven approach to capture variability and identify outliers by applying hypothesis-free, data-driven algorithms to national data sets.

|
Article Thumbnail
Standards and Interoperability

South Korea joined SNOMED International as the 39th member country. To ensure semantic interoperability, South Korea introduced SNOMED CT (Systemized Nomenclature of Medicine–Clinical Terms) in 2020. However, there is no methodology to map local Korean terms to SNOMED CT. Instead, this is performed sporadically and independently at each local medical institution. The quality of the mapping, therefore, cannot be guaranteed.

|
Article Thumbnail
Editorial

JMIR Medical Informatics is pleased to offer implementation reports as a new article type. Implementation reports present real-world accounts of the implementation of health technologies and clinical interventions. This new article type is intended to promote the rapid documentation and dissemination of the perspectives and experiences of those involved in implementing digital health interventions and assessing the effectiveness of digital health projects.

|
Article Thumbnail
Standards and Interoperability

Increasing digitalization in the medical domain gives rise to large amounts of health care data, which has the potential to expand clinical knowledge and transform patient care if leveraged through artificial intelligence (AI). Yet, big data and AI oftentimes cannot unlock their full potential at scale, owing to nonstandardized data formats, lack of technical and semantic data interoperability, and limited cooperation between stakeholders in the health care system. Despite the existence of standardized data formats for the medical domain, such as Fast Healthcare Interoperability Resources (FHIR), their prevalence and usability for AI remain limited.

|
Article Thumbnail
Computerized Provider Order Entry (CPOE)

Clinical practice guidelines (CPGs) and associated order sets can help standardize patient care and lead to higher-value patient care. However, difficult access and poor usability of these order sets can result in lower use rates and reduce the CPGs’ impact on clinical outcomes. At our institution, we identified multiple CPGs for general pediatrics admissions where the appropriate order set was used in <50% of eligible encounters, leading to decreased adoption of CPG recommendations.

|

We are working in partnership with