JMIR Medical Informatics

Clinical informatics, decision support for health professionals, electronic health records, and eHealth infrastructures.

Editor-in-Chief:

Christian Lovis, MD, MPH, FACMI, Division of Medical Information Sciences, University Hospitals of Geneva (HUG), University of Geneva (UNIGE), Switzerland


Impact Factor 3.1 CiteScore 7.9

JMIR Medical Informatics (JMI, ISSN 2291-9694, Journal Impact Factor™ 3.1 (Journal Citation Reports™ from Clarivate, 2023)) (Editor-in-chief: Christian Lovis, MD, MPH, FACMI) is an open-access PubMed/SCIE-indexed journal that focuses on the challenges and impacts of clinical informatics, digitalization of care processes, clinical and health data pipelines from acquisition to reuse, including semantics, natural language processing, natural interactions, meaningful analytics and decision support, electronic health records, infrastructures, implementation, and evaluation (see Focus and Scope).

JMIR Medical Informatics adheres to rigorous quality standards, involving a rapid and thorough peer-review process, professional copyediting, and professional production of PDF, XHTML, and XML proofs. The journal is indexed in MEDLINEPubMed, PubMed Central, DOAJ, Scopus, and SCIE (Clarivate)

With a CiteScore of 7.9, JMIR Medical Informatics ranks in the 78th percentile (#30 of 138) and the 77th percentile (#14 of 59) as a Q1 journal in the fields of Health Informatics and Health Information Management, according to Scopus data.

Recent Articles

Article Thumbnail
Health Information Exchange

To ensure interoperability, both structural and semantic standards must be followed. For exchanging medical data between information systems, the structural standard FHIR (Fast Healthcare Interoperability Resources) has recently gained popularity. Regarding semantic interoperability, the reference terminology SNOMED Clinical Terms (SNOMED CT), as a semantic standard, allows for postcoordination, offering advantages over many other vocabularies. These postcoordinated expressions (PCEs) make SNOMED CT an expressive and flexible interlingua, allowing for precise coding of medical facts. However, this comes at the cost of increased complexity, as well as challenges in storage and processing. Additionally, the boundary between semantic (terminology) and structural (information model) standards becomes blurred, leading to what is known as the TermInfo problem. Although often viewed critically, the TermInfo overlap can also be explored for its potential benefits, such as enabling flexible transformation of parts of PCEs.

|
Article Thumbnail
Case Study

Corneal transplantation, also known as keratoplasty, is a widely performed surgical procedure that aims to restore vision in patients with corneal damage. The success of corneal transplantation relies on the accurate and timely management of patient information, which can be enhanced using electronic health records (EHRs). However, conventional EHRs are often fragmented and lack standardization, leading to difficulties in information access and sharing, increased medical errors, and decreased patient safety. In the wake of these problems, there is a growing demand for standardized EHRs that can ensure the accuracy and consistency of patient data across health care organizations.

|
Article Thumbnail
Machine Learning

Hereditary angioedema (HAE), a rare genetic disease, induces acute attacks of swelling in various regions of the body. Its prevalence is estimated to be 1 in 50,000 people, with no reported bias among different ethnic groups. However, considering the estimated prevalence, the number of patients in Japan diagnosed with HAE remains approximately 1 in 250,000, which means that only 20% of potential HAE cases are identified.

|
Article Thumbnail
Clinical Communication, Electronic Consultation and Telehealth

Modern approaches such as patient-centered care ask health care providers (eg, nurses, physicians, and dietitians) to activate and include patients to participate in their health care. Mobile health (mHealth) is integral in this endeavor to be more patient centric. However, structural and regulatory barriers have hindered its adoption. Existing mHealth apps often fail to activate and engage patients sufficiently. Moreover, such systems seldom integrate well with health care providers’ workflow.

|
Article Thumbnail
Natural Language Processing

Diagnosis codes and prescription data are used in algorithms to identify postherpetic neuralgia (PHN), a debilitating complication of herpes zoster (HZ). Because of the questionable accuracy of codes and prescription data, manual chart review is sometimes used to identify PHN in electronic health records (EHR), which can be costly and time-consuming.

|
Article Thumbnail
Reviews in Medical Informatics

Postoperative infections remain a crucial challenge in health care, resulting in high morbidity, mortality, and costs. Accurate identification and labeling of patients with postoperative bacterial infections is crucial for developing prediction models, validating biomarkers, and implementing surveillance systems in clinical practice.

|
Article Thumbnail
Decision Support for Health Professionals

In response to the high patient admission rates during the COVID-19 pandemic, provisional intensive care units (ICUs) were set up, equipped with temporary monitoring and alarm systems. We sought to find out whether the provisional ICU setting led to a higher alarm burden and more staff with alarm fatigue.

|
Article Thumbnail
Natural Language Processing

A wealth of clinically relevant information is only obtainable within unstructured clinical narratives, leading to great interest in clinical natural language processing (NLP). While a multitude of approaches to NLP exist, current algorithm development approaches have limitations that can slow the development process. These limitations are exacerbated when the task is emergent, as is the case currently for NLP extraction of signs and symptoms of COVID-19 and postacute sequelae of SARS-CoV-2 infection (PASC).

|
Article Thumbnail
Viewpoints on and Experiences with Digital Technologies in Health

With the popularization of Large Language Models (LLMs), strategies for their effective and safe utilization in healthcare and research become increasingly pertinent. Despite the growing interest and eagerness among healthcare professionals and scientists to exploit the potential of LLMs, initial attempts may yield suboptimal results due to a lack of user experience, thus complicating the integration of AI tools into workplace routine. Focusing on scientists and healthcare professionals with limited LLM experience, this article highlights and discusses six easy to implement use cases of practical relevance. These encompass customizing translations, refining text and extracting information, generating comprehensive overviews and specialized insights, compiling ideas into cohesive narratives, crafting personalized educational materials, and facilitating intellectual sparring. Additionally, we discuss general prompting strategies and precautions for implementation of AI tools in biomedicine. Despite various challenges, the integration of LLMs into daily routines of physicians and researchers promises heightened workplace productivity and efficiency.

|
Article Thumbnail
New Technologies

In light of rapid technological advancements, the health care sector is undergoing significant transformation with the continuous emergence of novel digital solutions. Consequently, regulatory frameworks must continuously adapt to ensure their main goal to protect patients. In 2017, the new Medical Device Regulation (EU) 2017/745 (MDR) came into force, bringing more complex requirements for development, launch, and postmarket surveillance. However, the updated regulation considerably impacts the manufacturers, especially small- and medium-sized enterprises, and consequently, the accessibility of medical devices in the European Union market, as many manufacturers decide to either discontinue their products, postpone the launch of new innovative solutions, or leave the European Union market in favor of other regions such as the United States. This could lead to reduced health care quality and slower industry innovation efforts. Effective policy calibration and collaborative efforts are essential to mitigate these effects and promote ongoing advancements in health care technologies in the European Union market. This paper is a narrative review with the objective of exploring hindering factors to software as a medical device development, launch, and marketing brought by the new regulation. It exclusively focuses on the factors that engender obstacles. Related regulations, directives, and proposals were discussed for comparison and further analysis.

|
Article Thumbnail
AI Language Models in Health Care

Reading medical papers is a challenging and time-consuming task for doctors, especially when the papers are long and complex. A tool that can help doctors efficiently process and understand medical papers is needed.

|
Article Thumbnail
Adoption and Change Management of eHealth Systems

Headaches including migraines are one of the most common causes of disability and account for nearly 20-30% of referrals from primary care to neurology. In primary care, electronic health record-based alerts offer a mechanism to influence provider behaviors, manage neurology referrals, and optimize headache care.

|

Preprints Open for Peer-Review

We are working in partnership with