Published on in Vol 9, No 6 (2021): June
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/26598, first published
.
Journals
- Chen Z, Li D, Zhu J, Zhang S. DACFL: Dynamic Average Consensus-Based Federated Learning in Decentralized Sensors Network. Sensors 2022;22(9):3317 View
- Prayitno , Shyu C, Putra K, Chen H, Tsai Y, Hossain K, Jiang W, Shae Z. A Systematic Review of Federated Learning in the Healthcare Area: From the Perspective of Data Properties and Applications. Applied Sciences 2021;11(23):11191 View
- Joshi M, Pal A, Sankarasubbu M. Federated Learning for Healthcare Domain - Pipeline, Applications and Challenges. ACM Transactions on Computing for Healthcare 2022;3(4):1 View
- Rani S, Kataria A, Kumar S, Tiwari P. Federated learning for secure IoMT-applications in smart healthcare systems: A comprehensive review. Knowledge-Based Systems 2023;274:110658 View
- Li S, Liu P, Nascimento G, Wang X, Leite F, Chakraborty B, Hong C, Ning Y, Xie F, Teo Z, Ting D, Haddadi H, Ong M, Peres M, Liu N. Federated and distributed learning applications for electronic health records and structured medical data: a scoping review. Journal of the American Medical Informatics Association 2023;30(12):2041 View
- Guzzo A, Fortino G, Greco G, Maggiolini M. Data and model aggregation for radiomics applications: Emerging trend and open challenges. Information Fusion 2023;100:101923 View
- Sharma S, Guleria K. A comprehensive review on federated learning based models for healthcare applications. Artificial Intelligence in Medicine 2023;146:102691 View
- Chen S, Jin T, Xia Y, Li X. Metadata and Image Features Co-Aware Semi-Supervised Vertical Federated Learning With Attention Mechanism. IEEE Transactions on Vehicular Technology 2024;73(2):2520 View
- Vo V, Shin T, Yang H, Kang S, Kim S. A comparison between centralized and asynchronous federated learning approaches for survival outcome prediction using clinical and PET data from non-small cell lung cancer patients. Computer Methods and Programs in Biomedicine 2024;248:108104 View
- Rauniyar A, Hagos D, Jha D, Håkegård J, Bagci U, Rawat D, Vlassov V. Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions. IEEE Internet of Things Journal 2024;11(5):7374 View
- Zhao Y, Weng J, Liu J, Cai M. Enabling privacy-preserving medication analysis in distributed EHR systems. Journal of Information Security and Applications 2024;82:103749 View
- Luzón M, Rodríguez-Barroso N, Argente-Garrido A, Jiménez-López D, Moyano J, Del Ser J, Ding W, Herrera F. A Tutorial on Federated Learning from Theory to Practice: Foundations, Software Frameworks, Exemplary Use Cases, and Selected Trends. IEEE/CAA Journal of Automatica Sinica 2024;11(4):824 View
- Oh S, Lee M. Task-Driven Transferred Vertical Federated Deep Learning for Multivariate Internet of Things Time-Series Analysis. Applied Sciences 2024;14(11):4606 View
- Liu Y, Kang Y, Zou T, Pu Y, He Y, Ye X, Ouyang Y, Zhang Y, Yang Q. Vertical Federated Learning: Concepts, Advances, and Challenges. IEEE Transactions on Knowledge and Data Engineering 2024;36(7):3615 View
- Majeed A, Hwang S. A Multifaceted Survey on Federated Learning: Fundamentals, Paradigm Shifts, Practical Issues, Recent Developments, Partnerships, Trade-Offs, Trustworthiness, and Ways Forward. IEEE Access 2024;12:84643 View
- Shahid Z, Saguna S, Åhlund C. Variational Autoencoders for Anomaly Detection and Transfer Knowledge in Electricity and District Heating Consumption. IEEE Transactions on Industry Applications 2024;60(5):7437 View
Books/Policy Documents
- Stripelis D, Ambite J. Artificial Intelligence for Personalized Medicine. View