
Original Paper

Implementing Vertical Federated Learning Using Autoencoders:
Practical Application, Generalizability, and Utility Study

Dongchul Cha1,2, MD; MinDong Sung1, MD; Yu-Rang Park1, PhD
1Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
2Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea

Corresponding Author:
Yu-Rang Park, PhD
Department of Biomedical Systems Informatics
Yonsei University College of Medicine
50-1 Yonsei-ro
Sinchon-dong, Seodaemun-gu
Seoul, 03722
Republic of Korea
Phone: 82 2 2228 2363
Email: yurangpark@yuhs.ac

Abstract

Background: Machine learning (ML) is now widely deployed in our everyday lives. Building robust ML models requires a
massive amount of data for training. Traditional ML algorithms require training data centralization, which raises privacy and data
governance issues. Federated learning (FL) is an approach to overcome this issue. We focused on applying FL on vertically
partitioned data, in which an individual’s record is scattered among different sites.

Objective: The aim of this study was to perform FL on vertically partitioned data to achieve performance comparable to that
of centralized models without exposing the raw data.

Methods: We used three different datasets (Adult income, Schwannoma, and eICU datasets) and vertically divided each dataset
into different pieces. Following the vertical division of data, overcomplete autoencoder-based model training was performed for
each site. Following training, each site’s data were transformed into latent data, which were aggregated for training. A tabular
neural network model with categorical embedding was used for training. A centrally based model was used as a baseline model,
which was compared to that of FL in terms of accuracy and area under the receiver operating characteristic curve (AUROC).

Results: The autoencoder-based network successfully transformed the original data into latent representations with no domain
knowledge applied. These altered data were different from the original data in terms of the feature space and data distributions,
indicating appropriate data security. The loss of performance was minimal when using an overcomplete autoencoder; accuracy
loss was 1.2%, 8.89%, and 1.23%, and AUROC loss was 1.1%, 0%, and 1.12% in the Adult income, Schwannoma, and eICU
dataset, respectively.

Conclusions: We proposed an autoencoder-based ML model for vertically incomplete data. Since our model is based on
unsupervised learning, no domain-specific knowledge is required in individual sites. Under the circumstances where direct data
sharing is not available, our approach may be a practical solution enabling both data protection and building a robust model.

(JMIR Med Inform 2021;9(6):e26598) doi: 10.2196/26598
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Introduction

Machine learning (ML) is widely deployed in our daily lives,
including, but not limited to, personalized digital media, product
recommendations, and health care services. Building

high-quality ML models requires a huge amount of data for
training [1]. Conventional ML algorithms typically require the
training data to reside where the models are trained. Recently,
there has been an increasing level of concern about data privacy
[2]. The EU General Data Protection Regulation and the US
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Health Insurance Portability and Accountability Act are
examples of regulations to secure sensitive information when
gathering such information centrally. Moreover, as more data
are needed for a robust ML model, raw data are a crucial asset.
Sharing raw data raises data governance issues, making data
owners hesitant about sharing their data.

An alternative approach to overcome such concerns is federated
learning (FL). FL is a learning process in which the individual
data owners train a model collaboratively without exposing the
original data to others [2]. For the protection of data privacy,
k-anonymity [3], l-diversity [4], and t-closeness [5] are
well-established methods. Differential privacy [6] is another
semantic method to add noise to data. Using such methods
enables the aggregation of perturbed data with fewer concerns
of exposing the original data. However, stronger protection of
privacy requires stronger perturbations of the original data,
which reduces the utility; in other words, this results in
low-quality ML models. An alternative approach is
homomorphic encryption [7], which offers training with
encrypted data. However, training such a model is relatively
slow, possibly making it impractical to be used in real-world
applications [8].

FL could be divided into horizontal and vertical frameworks
[2]. In horizontal FL, the data have the same feature space but
are distributed among different organizations. In other words,
all rows share the same columns but could originate from
different sites. In contrast, vertical FL takes vertically partitioned
data for training. For each row in the database, columns
(features) originate from several different sites. Consider a
database of colorectal cancer patients consisting of
tumor-node-metastasis staging and laboratory results gathered
from different hospitals, and we want to build an ML model to
predict survival. In the horizontal FL setting, different
organizations train ML models in their individual databases but
share the same feature space (Figure 1a). However, in the
vertical FL setting, individual tests are spread among different
hospitals (eg, tumor stage in hospital A and laboratory tests in
hospital B), and ML training is performed without aggregation
of raw patient data (Figure 1b). Study results based on horizontal
FL [9,10] show comparable performance to that of ML models
trained centrally. For vertical FL, there is the possibility of
logistic regression [11], linear regression [12], boosting model
[13], a model capable of linear and logistic regressions, and
neural network models [14].

Figure 1. Classification of federated learning. Assume a colorectal cancer patient dataset, and only the target label is gathered centrally. (a) In horizontally
partitioned data, patients share the same feature space, but features are collected at different sites. (b) In vertically partitioned data, patient features are
present in different sites.

We here present a simple, practical, robust, and novel vertical
FL method based on autoencoder neural networks [15], more
specifically, an overcomplete autoencoder, in which hidden
layers have a higher dimension than input layers. We tested our
method in three datasets, including two medical datasets, to
demonstrate generalizability and utility.

Methods

Overcomplete Autoencoder for the Latent
Representation of Original Data
An autoencoder is a feed-forward neural network with the same
inputs and outputs that are trained in an unsupervised manner.
The network is fully connected and consists of an encoder and
a decoder. The encoder transforms the input into a latent
representation, and the decoder maps the latent representation

back to the original input. During training, the machine learns
both the encoder’s and decoder’s weights by minimizing the
reconstruction loss. There are three main layers of an
autoencoder: an input layer, hidden (including code) layer, and
output layer. By adding a hidden layer with constraints such as

fewer dimensions than the given input (Figure 2a, h ∈ m

[m<n]) the machine tries to learn essential features in the given
input. Since a conventional autoencoder reduces dimension,
there is an inevitable loss of information. In an overcomplete
autoencoder, hidden layers are larger than or equal to the input

layer (Figure 2b, h ∈ m [m≥n]). By having more feature space
in the code layer, information loss could be minimized,
especially when datasets have a small number of features.
Additionally, latent representation differs from the original input
data, enabling both security and performance.
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Figure 2. The autoencoder network, which is an unsupervised machine learning algorithm. Input and output are the same; thus, they have identical
feature space. (a) The conventional autoencoder has a latent space dimension smaller than the input space (m<n). (b) The overcomplete autoencoder
has equal or higher dimensions in the latent space (m≥n).

Datasets and Vertical Division of Data

Adult Income Dataset
The adult income dataset [16] has two labels: whether or not a
person earns over 50,000 per year, with eight categorical and
six continuous variables as input variables. The dataset included
37,155 individuals with a salary ≤50,000 and 11,687 individuals

with a salary >50,000 per year. We randomly sampled from the
11,687 individuals with a salary under 50,000 to balance the
dataset (random undersampling), so that the total dataset
comprised 23,374 individuals, and set the prediction chance
level to 50%. We vertically divided this dataset into three pieces,
assuming three different organizations possessing partial data
over individuals (Table 1).

Table 1. Dataset composition and training parameters with division to simulate vertically partitioned data.

Aggregated dimensionAutoencoder layersFeature dimensionDataset size (number of
rows)

DivisionDataset

384×23,37464-128-645, 5, 423,3743 sitesAdult income

384×5064-128-647, 3, 5503 sitesSchwannoma

896×15,76264-128-643, 4, 9, 3, 3, 4, 615,7627 siteseICU

Vestibular Schwannoma Dataset
The vestibular schwannoma dataset [17] is an anonymized,
private, medical dataset to predict hearing disabilities following
surgery. We included this dataset to demonstrate its feasibility
in a relatively low number of training samples with sparse data.
The dataset included 50 patients, one categorical variable, 14
continuous variables as input, and binary classification labels
as output. Since the dataset had 22 and 28 binary target labels,
no additional undersampling was performed. The data were
vertically split into three sites (Table 1).

The eICU Collaborative Research Database
The eICU collaborative research database [18] is a database
containing variables used in deriving Acute Physiologic
Assessment and Chronic Health Evaluation (APACHE) [19]
scores to predict a given patient’s mortality (binary

classification). The initial database contained 148,532 intensive
care unit (ICU) stays with APACHE version IVa. We only
included ICU stays with more than 15 (62.5%) nonnull values,
excluding 712 ICU stays. We also excluded 15,968 rows without
labels. Therefore, a total of 131,852 rows (ICU stays) were used,
7881 of which were labeled as expired. We randomly picked
7881 alive rows to rule out the class imbalance problem, making
the baseline dataset contain 15,762 rows, and vertically divided
the dataset into 7 sites (Table 1).

Training Workflow and Parameters
All three datasets were vertically divided. In all three datasets,
we assumed that a third-party relay server performs data
alignment between different servers. For example, the third row
in server A is also the third row in servers B and C. To test the
generalizability of our approach, we divided the dataset into
various numbers (Table 1). Following the vertical division of
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data, overcomplete autoencoder-based model training was
performed for each site (Figure 3 a, b, c). Following training,
each site’s latent data (Figure 3 a’, b,’ c,’ representations in the
code layer) were aggregated for training. We used PyTorch [20]
with the Fastai [21] library for this task. Each site was vertically

divided to simulate vertically partitioned data among different
sites. Accuracy and area under the receiver operating
characteristic curve (AUROC) were used as the evaluation
metrics for classification tasks.

Figure 3. The workflow of vertical federated learning using overcomplete autoencoder. The UCI adult income dataset is illustrated as an example. The
dataset consists of 14 features and 1 target label (income). Original data are vertically divided into several datasets, three in this case, to assume data
distribution among different sites. The heatmaps show each feature with prevalence. Each site (a, b, c) trains an autoencoder and transmits latent data,
which are differently distributed, as seen in the heatmaps (a’, b,’ c’). The latent data are aggregated for training to a server, and the server performs
model training. The accuracy of models created using the original data versus aggregated latent data is compared.

Autoencoder models were trained using an initial learning rate
of 0.01 and a learning rate decay of 0.99. There is a concern
that the ML algorithm might learn an identity function, which
may not correctly perturb (or encode) the data. However, a
previous study [22] using stochastic gradient descent (SGD)
when training resulted in a useful data representation. In addition
to using SGD, we also used a weight decay of 0.1 to prevent
the autoencoder models from learning the identity function and
overfitting.

A tabular neural network model with categorical embedding
was used when training. A centrally based model was used as
a baseline model. For each vertically split data, both models
were trained: an ML model based on each vertically split dataset
(Figure 3 a, b, c) and an ML model based on latent
representations of each split dataset (Figure 3 a’, b’, c’). Finally,
the central-based model was compared to the latent data
aggregated model for benchmarking our vertical federated neural
network model.

Code Availability
Since autoencoders are widely implemented in various
environments, we do not offer the source code publicly.
However, codes will be available upon request to the
corresponding author for noncommercial, educational purposes.

Results

Transformation of the Data to Latent Representations
The autoencoder-based network successfully transformed the
original data into latent representations with no domain
knowledge applied. These altered data were different from the
original data in terms of both the feature space and data
distributions (Figure 3 a’, b’, c’), indicating appropriate data
security.

Classification Performance
Following latent data aggregation, we tested the built model
against centralized models and individually trained models using
the vertically incomplete original data and latent data (Table 2;
see Multimedia Appendix 1 for a detailed division of the feature

JMIR Med Inform 2021 | vol. 9 | iss. 6 | e26598 | p. 4https://medinform.jmir.org/2021/6/e26598
(page number not for citation purposes)

Cha et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


space). The performance of the autoencoder increased as the
number of the code layers increased (see Multimedia Appendix
2 for detailed results). Of note, since we used categorical
embeddings when putting categorical variables to the
autoencoder and tabular neural network model, latent
representations of the original data were continuous variables.
The adult income and eICU datasets, which have a relatively
large number of rows, did not suffer from a fluctuation of

accuracy and AUROC. Although the schwannoma dataset,
which only has 50 rows, showed a fluctuation of accuracy and
AUROC among different sites, the overall accuracy and
AUROC penalties were still acceptable. The eICU dataset had
abundant feature space and was vertically divided into seven
sites. There was still a minimal loss of accuracy and AUROC,
implying good utility while preserving data privacy (Table 2).

Table 2. Classification results of the three datasets.

eICU datasetSchwannoma datasetAdult income datasetSite

AUROCAccuracyAUROCAccuracyAUROCaAccuracy

Central

0.890.810.840.900.910.83Before VFLb

0.880.800.840.820.900.82After VFLc

–1.12–1.230–8.89–1.10–1.20Differenced

A

0.720.700.810.820.890.81Before VFL

0.720.700.860.780.830.77After VFL

00+6.17–4.88–6.74–4.94Difference

B

0.800.730.820.760.900.81Before VFL

0.790.720.830.780.830.77After VFL

–1.25–1.37+1.22+2.63–7.78–4.94Difference

C

0.570.550.600.480.730.67Before VFL

0.570.560.710.620.830.76After VFL

01.82+18.33+29.17+13.70+13.43Difference

aAUROC: area under the receiver operating characteristics curve.
bVFL: vertical federated learning.
cCorresponding to the latent representation of original data (central, A, B, or C) in the code layer.
dThe difference is compared between AUROCs in classification tasks.

Discussion

Principal Results
We have successfully transformed original data into latent
representations and trained ML models with perturbed data,
resulting in minimal loss of accuracy while preserving data
privacy. In an autoencoder network, ML models learn data
representation in an unsupervised manner. Therefore, no domain
knowledge is required to train the model. Since the code layer
has more layers than the input layer, resulting in high
dimensionality, this method requires more computing power
compared to that required for traditional autoencoders. However,
loss of information is minimal, even though the data are severely
perturbed (Figure 3 a’, b’, c’). Although slight, there was still
a loss of accuracy and AUROC in the trained ML model (Table
2). We suspect this was due to redundant information generated
by the network, which acts as noise when training an ML model.
The model’s design is somewhat similar to local differential

privacy [23] in that each site performs training of ML models
independently before sending the perturbed data to a central
server. The main difference is that differential privacy has an
equal number of feature space dimensions as in the original
dataset, whereas our approach alters the feature space to a
predefined number of hidden layers.

To check its generalizability, we tested three different datasets
with various vertically split datasets. Training the ML model
worked well in all datasets, even with a relatively small number
of rows. Moreover, some datasets were vigorously divided, but
the accuracy remained comparable to that of the centralized ML
model. In real-life practice, our model may enable building an
ML model without the direct exchange of sensitive information
among different data owners. For example, a patient may
undergo some routine complete blood count test in one hospital,
obtain imaging studies in another, and perform electrolyte tests
in the other hospital. When building a classifier model, three
sites (hospitals) may train our proposed model individually and
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share the latent feature space to train the model without directly
exposing the patient’s data.

Comparison With Prior Work and Limitations
Earlier works on federated ML using vertically partitioned data
focused on the logistic regression [11], linear regression [12],
and boosting [13] models. Hardy et al [12] also utilized
additively homomorphic encryption. In their study, both
nonprivate and federated settings showed the same accuracy,
AUROC, and F1 score. However, the training time was in the
order of hours per epoch in high-performance cloud-based
machines, which may not be practical. Cheng et al [13] proposed
SecureBoost, which exhibited a performance comparable to that
of nonprivacy-preserving gradient boosting machine models.
They theoretically proved that if both ML models have identical
initialization and parameters, the SecureBoost algorithm is
lossless; that is, the model shows comparable accuracy to the
nonfederated boosting model. Mohassel et al [14] suggested a
system capable of linear regression, logistic regression, and
neural networks. They used a secure multiparty computation
[24] framework with two noncolluding servers (secure two-party
computation) to train ML models in a privacy-preserving
fashion. The results were promising, but the authors suggested
that the neural network model is not yet practical due to the
high number of interactions and communications costs.

In this study, we assumed that each client performs
autoencoder-based data alteration; therefore, file transmission
happens only once when building an ML model. Continuous
network connections are not necessary. In addition, training an
overcomplete autoencoder is not computationally expensive,
which makes our proposed model practical. Similar to other

privacy-preserving methods, our model ensures no data leakage
beyond data owners. Moreover, we have demonstrated that our
approach enables more than two participants to aggregate the
latent data, allowing more features per person as the number of
participating institutions increases.

Our study has limitations. First, even though the data are
differently shaped, data owners still need to transmit the coded
data to a central location, which may have room for reverse
engineering. However, unless the original feature space is
revealed to the recipient, reverse engineering may be difficult.
Moreover, the latent space is much bigger than the original
feature space, making data transmission redundant. Given
sufficient network capacity, this should not be a critical issue.
Second, more rigorous results are genuinely needed using
cross-validation. Last but not least is the explainability of the
model. Since the model transforms feature space into latent
space, each feature’s meaning in the aggregated data is
somewhat different; it cannot be directly associated with the
original feature space. Indirectly, site-wise comparison of
accuracy using only part of available data could be used to
measure feature importance, but future studies should be
performed to overcome this limitation.

Conclusions
We proposed an overcomplete autoencoder–based ML model
for vertically incomplete data. Since our model is based on
unsupervised learning, no domain-specific knowledge is required
in individual sites. Under the circumstances where direct data
sharing is not available, our approach may be a practical solution
enabling both data protection and building a robust model.
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APACHE: Acute Physiologic Assessment and Chronic Health Evaluation
AUROC: area under the receiver operating characteristics curve
FL: federated learning
ICU: intensive care unit
ML: machine learning
SGD: stochastic gradient descent
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