Published on in Vol 9, No 5 (2021): May

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/28868, first published .
A Multimodal Imaging–Based Deep Learning Model for Detecting Treatment-Requiring Retinal Vascular Diseases: Model Development and Validation Study

A Multimodal Imaging–Based Deep Learning Model for Detecting Treatment-Requiring Retinal Vascular Diseases: Model Development and Validation Study

A Multimodal Imaging–Based Deep Learning Model for Detecting Treatment-Requiring Retinal Vascular Diseases: Model Development and Validation Study

Journals

  1. Staffini A, Svensson T, Chung U, Svensson A. Heart Rate Modeling and Prediction Using Autoregressive Models and Deep Learning. Sensors 2021;22(1):34 View
  2. Ferro Desideri L, Rutigliani C, Corazza P, Nastasi A, Roda M, Nicolo M, Traverso C, Vagge A. The upcoming role of Artificial Intelligence (AI) for retinal and glaucomatous diseases. Journal of Optometry 2022;15:S50 View
  3. Park S, Ko T, Park C, Kim Y, Choi I. Deep Learning Model Based on 3D Optical Coherence Tomography Images for the Automated Detection of Pathologic Myopia. Diagnostics 2022;12(3):742 View
  4. Lim J, Hong M, Lam W, Zhang Z, Teo Z, Liu Y, Ng W, Foo L, Ting D. Novel technical and privacy-preserving technology for artificial intelligence in ophthalmology. Current Opinion in Ophthalmology 2022;33(3):174 View
  5. Stanojević M, Drašković D, Nikolić B. Retinal disease classification based on optical coherence tomography images using convolutional neural networks. Journal of Electronic Imaging 2022;32(03) View
  6. Lo J, Kang E, Chen Y, Hsieh Y, Wang N, Chen T, Chen K, Wu W, Hwang Y, Lo F, Lai C, Li T. Data Homogeneity Effect in Deep Learning-Based Prediction of Type 1 Diabetic Retinopathy. Journal of Diabetes Research 2021;2021:1 View
  7. Stepanov A, Usharova S, Malsagova K, Moshetova L, Turkina K, Kopylov A, Kaysheva A. Tear Proteome Revealed Association of S100A Family Proteins and Mesothelin with Thrombosis in Elderly Patients with Retinal Vein Occlusion. International Journal of Molecular Sciences 2022;23(23):14653 View
  8. Lim W, Ho H, Ho H, Chen Y, Lee C, Chen P, Lai F, Jang J, Ko M. Use of multimodal dataset in AI for detecting glaucoma based on fundus photographs assessed with OCT: focus group study on high prevalence of myopia. BMC Medical Imaging 2022;22(1) View
  9. Ji Y, Ji Y, Liu Y, Zhao Y, Zhang L. Research progress on diagnosing retinal vascular diseases based on artificial intelligence and fundus images. Frontiers in Cell and Developmental Biology 2023;11 View
  10. He J, Song J, Han Z, Cui M, Li B, Gong Q, Huang W. Multi-spectral transformer with attention fusion for diabetic macular edema classification in multicolor image. Soft Computing 2024;28(7-8):6117 View
  11. Campos A, Lima E, Jacobsen P, Arnould L, Lottenberg S, Maia R, Conci L, Minelli T, Morato A, Dantas-Jr R, Nomura C, Rissoli P, Pimentel S, Serrano Junior C. Association between obstructive coronary disease and diabetic retinopathy: Cross-sectional study of coronary angiotomography and multimodal retinal imaging. Journal of Diabetes and its Complications 2024;38(4):108721 View
  12. Parmar U, Surico P, Singh R, Romano F, Salati C, Spadea L, Musa M, Gagliano C, Mori T, Zeppieri M. Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases. Medicina 2024;60(4):527 View
  13. El-Ateif S, Idri A. Multimodality Fusion Strategies in Eye Disease Diagnosis. Journal of Imaging Informatics in Medicine 2024;37(5):2524 View
  14. Martin E, Cook A, Frost S, Turner A, Chen F, McAllister I, Nolde J, Schlaich M. Ocular biomarkers: useful incidental findings by deep learning algorithms in fundus photographs. Eye 2024;38(13):2581 View
  15. Yang M, Yang L, Zhang Q, Xu L, Yang B, Li Y, Cheng X, Zhang F, Liu M, Yu N. Deep learning‐based magnetic resonance imaging analysis for chronic cerebral hypoperfusion risk. Medical Physics 2024;51(8):5270 View
  16. Wassan J, Zheng H, Wang H. Role of Deep Learning in Predicting Aging-Related Diseases: A Scoping Review. Cells 2021;10(11):2924 View
  17. Li Y, Chiu P, Tam V, Lee A, Lam E. Dual-Mode Imaging System for Early Detection and Monitoring of Ocular Surface Diseases. IEEE Transactions on Biomedical Circuits and Systems 2024;18(4):783 View
  18. Lim G, Elangovan K, Jin L. Vision language models in ophthalmology. Current Opinion in Ophthalmology 2024;35(6):487 View
  19. Sendecki A, Ledwoń D, Tuszy A, Nycz J, Wąsowska A, Boguszewska-Chachulska A, Mitas A, Wylęgała E, Teper S. Fundus Image Deep Learning Study to Explore the Association of Retinal Morphology with Age-Related Macular Degeneration Polygenic Risk Score. Biomedicines 2024;12(9):2092 View
  20. Kang C, Lo J, Zhang H, Ng S, Lin J, Scott I, Kalpathy-Cramer J, Liu S, Greenberg P. Artificial intelligence for diagnosing exudative age-related macular degeneration. Cochrane Database of Systematic Reviews 2024;2024(10) View
  21. Fu C. Enhanced diabetic macular edema detection in multicolor imaging through a multi-feature decomposition fusion attention network. Journal of Radiation Research and Applied Sciences 2025;18(1):101210 View
  22. Tian X, Anantrasirichai N, Nicholson L, Achim A. The quest for early detection of retinal disease: 3D CycleGAN-based translation of optical coherence tomography into confocal microscopy. Biological Imaging 2024;4 View

Books/Policy Documents

  1. Cai L, Jin A, Hinkle J, Xu D, Kuriyan A. Diabetic Macular Edema. View