A Multimodal Imaging–Based Deep Learning Model for Detecting Treatment-Requiring Retinal Vascular Diseases: Model Development and Validation Study

Eugene Yu-Chuan Kang1,2*, MD; Ling Yeung2,3*, MD; Yi-Lun Lee4, BSc; Cheng-Hsiu Wu2,3, MD; Shu-Yen Peng2,3, MD; Yueh-Peng Chen4, PhD; Quan-Ze Gao4, PhD; Chihung Lin4, PhD; Chang-Fu Kuo2,4, PhD, MD; Chi-Chun Lai2,3, MD

1Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
2College of Medicine, Chang Gung University, Taoyuan, Taiwan
3Department of Ophthalmology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
4Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
* these authors contributed equally

Abstract

Background: Retinal vascular diseases, including diabetic macular edema (DME), neovascular age-related macular degeneration (nAMD), myopic choroidal neovascularization (mCNV), and branch and central retinal vein occlusion (BRVO/CRVO), are considered vision-threatening eye diseases. However, accurate diagnosis depends on multimodal imaging and the expertise of retinal ophthalmologists.

Objective: The aim of this study was to develop a deep learning model to detect treatment-requiring retinal vascular diseases using multimodal imaging.

Methods: This retrospective study enrolled participants with multimodal ophthalmic imaging data from 3 hospitals in Taiwan from 2013 to 2019. Eye-related images were used, including those obtained through retinal fundus photography, optical coherence tomography (OCT), and fluorescein angiography with or without indocyanine green angiography (FA/ICGA). A deep learning model was constructed for detecting DME, nAMD, mCNV, BRVO, and CRVO and identifying treatment-requiring diseases. Model performance was evaluated and is presented as the area under the curve (AUC) for each receiver operating characteristic curve.

Results: A total of 2992 eyes of 2185 patients were studied, with 239, 1209, 1008, 211, 189, and 136 eyes in the control, DME, nAMD, mCNV, BRVO, and CRVO groups, respectively. Among them, 1898 eyes required treatment. The eyes were divided into training, validation, and testing groups in a 5:1:1 ratio. In total, 5117 retinal fundus photos, 9316 OCT images, and 20,922 FA/ICGA images were used. The AUCs for detecting mCNV, DME, nAMD, BRVO, and CRVO were 0.996, 0.995, 0.990, 0.959, and 0.988, respectively. The AUC for detecting treatment-requiring diseases was 0.969. From the heat maps, we observed that the model could identify retinal vascular diseases.

Conclusions: Our study developed a deep learning model to detect retinal diseases using multimodal ophthalmic imaging. Furthermore, the model demonstrated good performance in detecting treatment-requiring retinal diseases.

(JMIR Med Inform 2021;9(5):e28868) doi: 10.2196/28868
KEYWORDS
deeplearning;retinalvasculardiseases;multimodalimaging;treatmentrequirement;machinelearning;eye;retinal;imaging;treatment;model;detection;vascular

Introduction

Background
Retinalvasculardiseases,includingdiabeticmacularedema(DME),neovascularagerelatedmaculadegeneration(nAMD),myopicchoroidaneovascularization(mCNV),andretinalveinocclusion(RVO),highlyaffectvisualfunctionandleadtoloss

ofworkingabilityandimpairedlifequality[1-4].Anti–vascularendothelialgrowthfactor(VEGF)canimproveyoulocomes

forpatientswithretinaldiseases[5].Earlydiseasedetection
timelymanagementcanpreventdiseaseprogressionand
advancedvisualimpairment.

Withitsadvancementinrecentyears,artificialintelligencehas
recentlybeenusedforseveralapplicationsinthemedicalfield,
includingfordiseasemonitoring,dagnosis,andtreatment[6].
Inophthalmology,deeplearning—anartificialintelligencetechnique—canpotentiallydetectdiseases,suchasdiabetic
retinopathy,glaucoma,nAMD,andretinopathyofprematurity,
aswellasrefractiveerrors[7].Differentocularpathologiescan
beidentifiedusingdifferentimagingmodalities.Multiple
imagingmodalitiesareavailableforretinalvasculardisease
diagnosis.Althoughtheretentionoffundusphotographyfor
diagnosisisfeasible,robustdiagnosismayrequirefurther
imaging,suchasthroughtheuseofopticalcoherencetomography(OCT),chorioretinalangiography(ie,fluorescein
angiography[FA]andindocyaninegreenangiography[ICGA]),
andopticalcoherencetomographyangiography(OCTA).Deep
learninghasbeenappliedforvariousimagingtechniques.
Inadditiontocolorfundusimages,whicharecommonlyusedfor
detectingeyediseases[7],otherimagingmodalitiesareuseful
indeeplearning–basedapplications.Forexample,OCThas
beenusedfordiagnosisandreferralinpatientswithretinal
diseases[8,9],andOCTAhasbeenusedforidentifying
nonperfusionareasinthetheretina[10].

Objective
Multimodalimaginginophthalmologycouldimprovethe
accuracyofdiseasediagnosis.Theincreasedapplication
ofmultipleimagingmodalitiesfordiseasetectionhasledto
advancementsindeeplearning–assisteddiseasediagnosis.
An
forglaucomadiagnosis.Meanwhile,Vaghefieta[12]
demonstratedanincreasedaccuracywhenusingmultimodal
imagingtotrainalanalgorithmforOCT,OCTA,andretinal
fundusphotographyfordetectingdryAMD.However,limited
researchhasinvestigatedtheuseofdeeplearningtechniques
inmultimodalimagingfordeterminingretinalvasculardiseases.
Inourstudy,wedevelopedadeeplearning–basedmodelfor
detectingretinalvasculardiseasesanddiseasessquiring
anti-VEGFtreatmentthroughtheuseofmultimodalretinal
imaging,includingcolorfundusphotography,OCT,anda
withorwithoutICGA(FA/ICGA).

Methods
Study Participants
Inthisretrospectivestudy,weincludedpatientswhoundergoinclinicalexaminationsinvolvingretinalfundusphotography,
OCT,andFA/ICGAfrom2013tot2019atChangGung
MemorialHospital,LinkouMedicalCenter,TaipeiandKeelung
branches.theretinalfundusphotoswereobtainedusing1of
the2colorfunduscameras(TopconMedicalSystems;digital
non–mydriaticretinalcamera:Canon).OCTwasperformed
usingOCTmachines(HeidelbergEngineeringInc;Avanti,
OptovueInc),andFA/ICGAimageswereobtainedusingfundus
angiographymachines(HeidelbergEngineering,Inc).Thestudy
protocolwasapprovedbytheInstitutionalReviewBoardof
ChangGungMemorialHospital(no.201900477B0),andthestudy
adheredtothetensoftheDeclarationofHelsinki.

Data Classification
Inourstudy,weidentifiedretinalvasculardiseases,including
DME,nAMD,mCNV,branchretinalveinocclusion(BRVO),
andcentralretinalveinocclusion(CRVO).Patientswithouta
historyofanti-VEGFtreatmentwereincluded.Afterreviewof
themultimodalimagesofeacheye,disease diagnoses and need
foranti-VEGFtreatmentweredeterminedby3trainedretinal
ophthalmologists(LY,CHW,andSYP,whohad20,10,ando6
years of clinical experience, respectively).Eyephotoswere
firstreviewedby2oftheretinalophthalmologists(CHWand
SYP).Theophthalmologists(CHWandSYP)excludedimages
withpoorqualityornondifferentiablediagnosis.Whenthe
disease labels assigned by the ophthalmologists differed, a
consensus was reached through discussion among all 3 retinal
ophthalmologists.Theseniorretinalophthalmologist(LY)again
confirmedtheimagelabelsthatwereconsistentinthefirst
labeling.Thepatientswereclassifiedintodeme,nAMD,mCNV,
BRVO, and CRVO groups according to their disease diagnosis.
The retinal ophthalmologists further defined diseases as
anti-VEGFtreatmentrequiringornon–treatmentrequiring.
Basedonthepublishedliterature,thetreatmentrequirement
wasdefinedseparatelyinretinalvasculardiseaseaccordings
thefeaturesindifferentimages[1,2,13-15].Moreover,inear
controlgroup,weneededpatientswhohadundergoretinal
fundusphotography,OCT,andFA/ICGAexaminationfor
clinicalpurposes,buthetheexaminationsshowednoremarkable
lesionsoreonlylesionsnotrelatedretinalvasculardiseases.
Formultimodalimaging,retinalfundusphotoswemaculacentered;
OCTimageswerefoveacentered;andaFA/ICGA
images,whichwererandomlyselectedfromdifferentphases,
weremaculacentered.

Data Management
Thedatamanagementandimageprocessingwerealldone
onthesameeye.Wecollegethatsamplesofretinalfundus
photography,OCT,andaICGAfromeacheye.Thethemechart
ofthecollectionprocessisdisplayedinFigure1.First,
imageswerealizedbythedetectionmodeltoselectandcrop
for different image types. The detection model, Cascade R-CNN [16], was trained with 599 images in different imaging modalities. The isolated images were first resized to 256 × 256 pixels. Subsequently, isolated images were augmented by slight adjustment of the brightness and contrast level, foggy masking, compression, rotation, horizontal flipping, and the addition of side lines. Then, 25 images were randomly selected from different imaging modalities and assembled. At least one image was required from each imaging modality. The assembled image package consisted of 25 segmented images from the same eye based on a combination of images with various augmentations and components of fundus retinal photography, OCT, and FA/ICGA. The size of the assembled images was 1280 × 1280 pixels, consisting of 25 images with a size of 256 × 256. Then, the image package was sent to the model for prediction.

Figure 1. Flowchart of multimodal image management and processing. OCT: optical coherence tomography; FA/ICGA: fluorescein angiography with or without indocyanine green angiography.

Model Architecture
In our study, EfficientNetB4 was used as the convolutional neural network (CNN) for the classification model (Figure 2). Because our goal was to aid disease diagnosis and the detection of disease severity, the models had 2 outputs: (1) disease classification and (2) treatment requirement determination. However, features indicating severity may differ based on the disease. Our model first delivered disease prediction for differentiating different retinal vascular diseases. We then designed a layer consisting of a fully connected, reshaped, and weighted sum to facilitate the model classification of treatment requirement partially according to the results from the disease prediction part. In addition, to visualize the features for model prediction, heat maps were generated using gradient-weighted class activation mapping [17], which used the gradient based on the output scores to show the activation map for the specific image. The features of the heat maps were highlighted in a lighter color.
Figure 2. Architecture of the deep learning prediction model. CNN: convolutional neural network; FCL: fully connected layer; GAP: global average pooling.

Model Training

Image packages were split into training, validation, and testing data sets in a 5:1:1 ratio, respectively. The model was trained based on noisy student [18] pretrained weight and optimized using an AdamW optimizer [19]. The model was trained 3 times with different combinations of training and validation data sets. We also tested different parameters including learning rates of 1e-4, 1e-5, and 5e-5, and batch sizes of 8, 12, and 16. Subsequently, the model with the best performance in the training and validation data sets was selected and evaluated in the testing data set (Multimedia Appendices 1 and 2). The learning rate and batch size were set as 5e-5 and 16, respectively. Data preprocessing and the training and evaluation of the model were completed on a NVIDIA DGX-1 server with the Ubuntu 18.04 operating system. Image preprocessing, including conversion, augmentation, and assembly, was conducted using ImageMagick 7.0.10 [20]. Images were evaluated and cropped using Mmdetection 1.0.0 [21] and Pytorch 1.4.0 [22], and the bounding box was labeled using CocoAnnotator [23]. Tensorflow 2.2 [24] was used as the framework to train and evaluate the deep learning model.

Statistical Analysis

Receiver operating characteristic (ROC) curves were used for differentiating different retinal vascular diseases and treatment-requiring diseases, and the area under the curve (AUC) was measured for each ROC curve. Moreover, the sensitivity, specificity, and accuracy of the model were calculated. Regarding model performance in predicting different retinal...
diseases, the AUC, sensitivity, specificity, and accuracy were based on a one-versus-rest comparison. Additionally, a confusion matrix was created and demonstrated sensitivity in disease prediction. Statistical analysis was performed using the Sklearn 0.23.2 package in Python (Python Software Foundation).

Results

Study Participants and Data Distribution

In total, 2992 eyes of 2185 patients were included in our study. In the first labeling of 2992 eyes, 212 (7.08%) were differently labeled by CHW and SYP, and a consensus was reached after discussion among all 3 retinal ophthalmologists. Among the 2780 eyes with consistent labels in the first step, 144 (5.18%) eyes had different labels after review by LY, and a consensus was reached after discussion among all 3 retinal ophthalmologists. The distribution of the included eyes is shown in Table 1.

Table 1. Number of eyes included in the control and disease groups.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Total</th>
<th>Treatment-requiring</th>
<th>Non–treatment-requiring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>239</td>
<td>N/A<sup>a</sup></td>
<td>N/A<sup>a</sup></td>
</tr>
<tr>
<td>DME<sup>b</sup></td>
<td>1209</td>
<td>788</td>
<td>421</td>
</tr>
<tr>
<td>nAMD<sup>c</sup></td>
<td>1008</td>
<td>809</td>
<td>199</td>
</tr>
<tr>
<td>mCNV<sup>d</sup></td>
<td>211</td>
<td>56</td>
<td>155</td>
</tr>
<tr>
<td>BRVO<sup>e</sup></td>
<td>189</td>
<td>144</td>
<td>45</td>
</tr>
<tr>
<td>CRVO<sup>f</sup></td>
<td>136</td>
<td>101</td>
<td>35</td>
</tr>
<tr>
<td>Total</td>
<td>2992</td>
<td>1898</td>
<td>855</td>
</tr>
</tbody>
</table>

^aN/A: not applicable.

^bDME: diabetic macular edema.

^cnAMD: neovascular age-related macular degeneration.

^dmCNV: myopic choroidal neovascularization.

^eBRVO: branch retinal vein occlusion.

^fCRVO: central retinal vein occlusion.

The control, DME, nAMD, mCNV, BRVO, and CRVO groups consisted of 239, 1209, 1008, 211, 189, and 136 eyes, respectively. Among all the disease groups, 788, 809, 56, 144, and 101 eyes required treatment in the DME, nAMD, mCNV, BRVO, and CRVO groups, respectively. Subsequently, 2138, 427, and 427 eyes were assigned to the training, validation, and testing data sets, respectively. We used 5117 retinal fundus photos, 9316 OCT images, and 20,922 FA/ICGA images, and the distribution of the images in different data sets is shown in Table 2.

Table 2. Distribution of image number used in different modalities for different data sets.

<table>
<thead>
<tr>
<th>Modality</th>
<th>Total (n=2992)</th>
<th>Training (n=2138)</th>
<th>Validation (n=427)</th>
<th>Testing (n=427)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinal fundus photos</td>
<td>5117</td>
<td>3662</td>
<td>709</td>
<td>746</td>
</tr>
<tr>
<td>OCT<sup>a</sup></td>
<td>9316</td>
<td>6704</td>
<td>1272</td>
<td>1340</td>
</tr>
<tr>
<td>FA/ICGA<sup>b</sup></td>
<td>20922</td>
<td>14932</td>
<td>2959</td>
<td>3031</td>
</tr>
</tbody>
</table>

^aOCT: optical coherence tomography.

^bFA/ICGA: fluorescein angiography with or without indocyanine green angiography.

Model Performance

Model performance was evaluated using the testing data set. ROC curves are illustrated in Figure 3, and the AUC for each curve was determined. For disease identification, the overall AUC was 0.987, and the AUC was the highest in the mCNV (0.996) and control (0.996) groups, followed by the DME (0.995), nAMD (0.990), CRVO (0.988), and BRVO (0.959) groups. For predicting diseases requiring anti-VEGF treatment, the AUC was 0.969. Details regarding the model sensitivity and specificity are provided in Table 3. For retinal vascular disease prediction, the sensitivity was the highest for the control (0.971) group, followed by the nAMD (0.956), DME (0.940), and mCNV (0.933) groups, whereas the sensitivity of RVO identification was the lowest (0.690 for BRVO and 0.769 for CRVO). Regarding the prediction of diseases requiring anti-VEGF treatment, the sensitivity was 0.904 and specificity...
was 0.945. The accuracy for disease prediction was the highest in the control and mCNV (0.984) groups, followed by the BRVO and CRVO (0.977), DME (0.967), and nAMD (0.963) groups.

The accuracy for the detection of treatment-requiring diseases was 0.930. The confusion matrix is shown in Figure 4.

Figure 3. Receiver operating characteristic curves of the model performance for (A) predicting different retinal vascular diseases and (B) identifying treatment-requiring diseases. AUC: area under the curve; BRVO: branch retinal vein occlusion; CRVO: central retinal vein occlusion; DME: diabetic macular edema; mCNV: myopic choroidal neovascularization; nAMD: neovascular age-related macular degeneration.
Table 3. Sensitivity, specificity, and accuracy of the model in the prediction of retinal vascular diseases and treatment-requiring diseases.

<table>
<thead>
<tr>
<th>Value</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.971</td>
<td>0.985</td>
<td>0.984</td>
</tr>
<tr>
<td>DME(^a)</td>
<td>0.940</td>
<td>0.988</td>
<td>0.967</td>
</tr>
<tr>
<td>nAMD(^b)</td>
<td>0.956</td>
<td>0.966</td>
<td>0.963</td>
</tr>
<tr>
<td>mCNV(^c)</td>
<td>0.933</td>
<td>0.987</td>
<td>0.984</td>
</tr>
<tr>
<td>BRVO(^d)</td>
<td>0.690</td>
<td>0.997</td>
<td>0.977</td>
</tr>
<tr>
<td>CRVO(^e)</td>
<td>0.769</td>
<td>0.983</td>
<td>0.977</td>
</tr>
<tr>
<td>Treatment requirement</td>
<td>0.904</td>
<td>0.945</td>
<td>0.930</td>
</tr>
</tbody>
</table>

\(^a\)DME: diabetic macular edema.
\(^b\)nAMD: neovascular age-related macular degeneration.
\(^c\)mCNV: myopic choroidal neovascularization.
\(^d\)BRVO: branch retinal vein occlusion.
\(^e\)CRVO: central retinal vein occlusion.

Figure 4. Confusion matrix demonstrating the performance of the prediction model in different retinal vascular diseases. BRVO: branch retinal vein occlusion; CRVO: central retinal vein occlusion; DME: diabetic macular edema; mCNV: myopic choroidal neovascularization; nAMD: neovascular age-related macular degeneration.

Heat Maps for Model Prediction

Heat maps for visual explanations of our model predictions were generated using gradient-weighted class activation mapping, and the samples are shown in Figure 5. In the heat maps, the model could simultaneously identify the lesion in different imaging modalities. Regarding different retinal vascular diseases, the model had different weights in different image modalities.
modalities. For example, in eyes with RVO, the model highlighted the exudates and hemorrhage dot in retinal fundus photos, ischemic area, and leaking point in FA/ICGA. In patients requiring treatment for DME, the model highlighted retinal vessels within the macula in retinal images, the central swelling area in OCT images, and the leaking or staining lesions in FA/ICGA images.

Figure 5. Sample heat maps generated by the prediction model in a true-positive patient with (A) treatment-requiring branch retinal vein occlusion, (B) treatment-requiring diabetic macular edema, and (C) non–treatment-requiring age-related macular degeneration.
Discussion

Main Findings

In this study, we used multimodal imaging to develop a deep learning–based model for the prediction of retinal vascular diseases, including DME, nAMD, mCNV, BRVO, and CRVO, and to determine whether anti-VEGF treatment was required. This model had average AUCs of 0.987 and 0.969 for predicting retinal vascular diseases and for predicting treatment-requiring diseases, respectively. The heat map shows that the model can identify disease features through multimodal retinal imaging.

Ophthalmology Imaging in Deep Learning

Previous studies have proven the efficacy of using different image modalities in deep learning–based models for predicting retinal diseases. In addition to retinal fundus images for identifying diabetic retinopathy, AMD, and glaucoma [7], a deep learning model using OCT for retinal layer segmentation and retinal disease identification was developed by the DeepMind group [8]. Moreover, deep learning could help to detect ischemic zones in retinal vascular diseases through the use of ultra-wide-field FA [25]. The aforementioned studies demonstrated that deep learning can be effectively applied for a single retinal imaging modality. However, few investigations have been conducted to study the application of deep learning models for predicting diseases using more than one retinal imaging modality. OCT and retinal fundus images have been used concomitantly for dry AMD [26] and glaucoma [11] diagnosis. However, previous studies have either used a single imaging modality or focused on predicting a single retinal disease. To date, few studies have evaluated the performance of deep learning models with multimodal retinal imaging for predicting multiple retinal vascular diseases.

Multimodal Imaging–Based Deep Learning Model for Retinal Vascular Diseases

To our knowledge, this is the first study to use multimodal deep learning–based architecture for detecting multiple retinal vascular diseases. In our study, we used multiple image modalities, including retinal fundus photography, OCT, and FA/ICGA, for predicting neovascular retinal diseases, including DME, nAMD, mCNV, and RVO [27]. Furthermore, this model can identify diseases requiring anti-VEGF treatment. In clinical settings, multimodal retinal images are crucial for ophthalmologists to treat retinal diseases. Occasionally, a feature in a retinal image modality may be shared by many retinal diseases. For example, increased central retinal thickness in OCT can be present in DME, nAMD, mCNV, and RVO, but retinal fundus images may vary among these diseases. The features of nAMD and mCNV may appear similar in retinal fundus images, and an ICGA is needed for differentiating them [2]. Therefore, multimodal imaging is required for the diagnosis and treatment determination of different retinal diseases [28]. Our model with multimodal imaging was similar to real-world ophthalmology practice with regard to the diagnosis for multiple retinal diseases and determination of disease severity. In real-world practice, the model may help with the screening of the diseases and treatment-requiring status, saving ophthalmologist’s time and effort on reviewing the images.

Although the AUC of different retinal vascular diseases demonstrated excellent differentiation, defined as AUC > 0.8 [29], the RVO groups showed relatively low sensitivity. This might be related to the low number of eyes used for model training. In the future investigation, the generative adversarial network may be implemented to synthesize ophthalmic images and solve the problem of an inadequate number of images [30].

Detection of Treatment-Requiring Retinal Vascular Diseases

Because expenses involved in using anti-VEGF drugs in the treatment of retinal vascular diseases are high, patients being administered these drugs may need to meet strict criteria to claim reimbursement from insurance companies in many regions [31]. In Taiwan, the use of intravitreal anti-VEGF treatment for DME, nAMD, mCNV, and RVO requires prereview by members of the Taiwan National Health Insurance program for reimbursement [32,33]. An efficient and accurate method for evaluating a patient’s retinal vascular disease status and disease severity may be essential. Our model could not only aid ophthalmologists in disease diagnosis and in determining the need for anti-VEGF treatment for retinal vascular diseases but also help with the prereview of anti-VEGF treatment.

Image Variability for the Model

The model developed in the present study is highly flexible in terms of image input. It does not depend on a fixed image distribution for different modalities. The only requirement is at least one image for each imaging modality. We investigated the model accuracy for packages with different numbers of images, and 25 images in a 5 × 5 matrix had the highest performance. Moreover, we tested different CNN models and different compositions of imaging modalities to determine which could achieve the highest accuracy (Multimedia Appendix 3). Using the CNN of EfficientNetB4 with images of retinal fundus photography, OCT, and FA/ICGA had the best performance. The images from the same eye can be randomly arranged or augmented during the preprocessing stage before being used in the prediction model. The visualized heat maps show that the model has the ability of simultaneous differentiation of retinal diseases with the use of different imaging modalities. With DME, for example, both the central retina in OCT and the leaking points in FA had high weightage. For BRVO, the model highlights areas with hemorrhage in retinal fundus images, increased retinal thickness in OCT images, and nonperfusion in FA images. These findings are compatible with the clinical features of retinal diseases [34,35] and indicate that our model produces reasonable and reliable predictions of retinal vascular diseases.

False Prediction of the Model

Regarding false predictions of retinal diseases, sample heat maps are presented in Figure 6. We observed that the model provided wrong predictions mostly for eyes with advanced-stage diseases or coexisting retinal diseases. Retinal vascular diseases may share undistinguishable features in advanced stages. For example, in an advanced stage of a disease, retinal hemorrhage, retinal nonperfusion, and macular edema could appear to have the same prominence in CRVO as in DME and advanced
The coexistence of diabetic retinopathy with DME may produce clinical features similar to those of RVO with macular edema. Additionally, other retinal disorders, such as central serous chorioretinopathy, may display features similar to those of retinal vascular diseases and lead to misdiagnosis by the model. As for diseases requiring anti-VEGF treatment, false prediction was noted in cases with borderline disease activity or other retinal disorders, such as central serous chorioretinopathy and epiretinal membrane, for which anti-VEGF treatment is not indicated.

Figure 6. Sample heat maps for false prediction of the model: (A) false prediction of treatment-requiring diabetic macular edema (DME) in a patient with coexisting DME and central retinal vein occlusion (CRVO); (B) false prediction of treatment-requiring age-related macular degeneration (AMD) in a patient with central serous chorioretinopathy; (C) false prediction of treatment-requiring DME in a patient with epiretinal membrane, lamellar macular hole, and diabetic retinopathy; (D) false prediction of treatment-requiring DME in a patient with advanced CRVO.

Study Limitations

This study had some limitations. First, the model requires the use of multiple image modalities, including OCT and FA/ICGA, which some eye-care facilities may not be equipped with. Although the study focused on deep learning–based prediction with multimodal imaging, clinical application may require more investigation. Second, images used in the study underwent quality checks. The efficacy during application to a real-world clinical setting may be affected by the patient’s condition and the image quality. Additionally, some ocular diseases affecting image signal transmission could affect image quality and retinal disease diagnosis. Third, images from different machine manufacturers not included in our study might have affected the model accuracy. A transfer learning approach could be adopted in cases where images are obtained from different machine manufacturers. Fourth, we did not consider other retinal vascular diseases, such as retinal neovascularization caused by uveitis or infection. The model is inapplicable to diseases not included in our study. Fifth, we only identified disease statuses that may require anti-VEGF treatment. Disease statuses requiring other treatments, such as laser therapy, were not analyzed in the current study. Furthermore, images of the most advanced disease stages with features such as severe vitreous hemorrhage or diffused chorioretinal atrophy would have been excluded due to nondifferentiable diagnosis. Sixth, a relatively small number of eyes in the RVO groups led to decreased accuracy in disease prediction and more data may be needed for better model performance. Last, the study group only included patients without previous anti-VEGF treatment. The accuracy in patients with a history of anti-VEGF treatment needs further investigation.

Conclusions

We developed a deep learning–based model using multimodal imaging for predicting retinal vascular diseases and determining whether anti-VEGF treatment is required. This model can facilitate the differentiation of DME, nAMD, mCNV, BRVO, and CRVO and help in determining the indication for anti-VEGF treatment.

Acknowledgments

The authors thank Andy Po-Chun Kang, MSc, for English editing and technical support. The authors would also like to thank the Maintenance Project of the Center for Artificial Intelligence in Medicine at Chang Gung Memorial Hospital, Taiwan (CLRPG3H0012, CIRPG3H0012) for statistical assistance and study support. Chang Gung Memorial Hospital, Taiwan, provided additional support to this study (CMRPG3L0251, CMRPG2J0211, and CMRPG2J0212). This manuscript was edited by Wallace Academic Editing. The founder had no role in the study design or interpretation of the results.
Authors’ Contributions
EYCK, CCL, LY, and CFK contributed to conception and design of the study. Data were collected by YLL, CHW, and SYP. CFK, CCL, LY, YPC, QZG, and CHL contributed to data interpretation. EYCK and YLL wrote the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Splitting of the data sets and training process of the model.
[PNG File , 100 KB - Multimedia Appendix 1]

Multimedia Appendix 2
Performance of the model trained with different (A) learning rates and (B) batch sizes. AUC: area under the curve.
[PDF File (Adobe PDF File), 80 KB - Multimedia Appendix 2]

Multimedia Appendix 3
Performance of the model with different convolutional neural networks and composition of imaging modality. AUC: area under the curve; CF: color fundus photography; CNN: convolutional neural network; FA/ICGA: fluorescein angiography with or without indocyanine green angiography; OCT: optical coherence tomography.
[PNG File , 115 KB - Multimedia Appendix 3]

References

Abbreviations

- **AUC**: area under the curve
- **BRVO**: branch retinal vein occlusion
- **CNN**: convolutional neural network
- **CRVO**: central retinal vein occlusion
- **DME**: diabetic macular edema
- **FA**: fluorescein angiography
- **mCNV**: myopic choroidal neovascularization
- **nAMD**: neovascular age-related macular degeneration
- **OCTA**: optical coherence tomography angiography
- **ROC**: receiver operating characteristic
- **VEGF**: vascular endothelial growth factor