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Abstract

Background: Retinal vascular diseases, including diabetic macular edema (DME), neovascular age-related macular degeneration
(nAMD), myopic choroidal neovascularization (mCNV), and branch and central retinal vein occlusion (BRVO/CRVO), are
considered vision-threatening eye diseases. However, accurate diagnosis depends on multimodal imaging and the expertise of
retinal ophthalmologists.

Objective: The aim of this study was to develop a deep learning model to detect treatment-requiring retinal vascular diseases
using multimodal imaging.

Methods: This retrospective study enrolled participants with multimodal ophthalmic imaging data from 3 hospitals in Taiwan
from 2013 to 2019. Eye-related images were used, including those obtained through retinal fundus photography, optical coherence
tomography (OCT), and fluorescein angiography with or without indocyanine green angiography (FA/ICGA). A deep learning
model was constructed for detecting DME, nAMD, mCNV, BRVO, and CRVO and identifying treatment-requiring diseases.
Model performance was evaluated and is presented as the area under the curve (AUC) for each receiver operating characteristic
curve.

Results: A total of 2992 eyes of 2185 patients were studied, with 239, 1209, 1008, 211, 189, and 136 eyes in the control, DME,
nAMD, mCNV, BRVO, and CRVO groups, respectively. Among them, 1898 eyes required treatment. The eyes were divided
into training, validation, and testing groups in a 5:1:1 ratio. In total, 5117 retinal fundus photos, 9316 OCT images, and 20,922
FA/ICGA images were used. The AUCs for detecting mCNV, DME, nAMD, BRVO, and CRVO were 0.996, 0.995, 0.990, 0.959,
and 0.988, respectively. The AUC for detecting treatment-requiring diseases was 0.969. From the heat maps, we observed that
the model could identify retinal vascular diseases.

Conclusions: Our study developed a deep learning model to detect retinal diseases using multimodal ophthalmic imaging.
Furthermore, the model demonstrated good performance in detecting treatment-requiring retinal diseases.
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Introduction

Background
Retinal vascular diseases, including diabetic macular edema
(DME), neovascular age-related macular degeneration (nAMD),
myopic choroidal neovascularization (mCNV), and retinal vein
occlusion (RVO), highly affect visual function and lead to loss
of working ability and impaired life quality [1-4]. Anti–vascular
endothelial growth factor (VEGF) can improve visual outcomes
for patients with retinal diseases [5]. Early disease detection
and timely management can prevent disease progression and
advanced visual impairment.

With its advancement in recent years, artificial intelligence has
recently been used for several applications in the medical field,
including for disease monitoring, diagnosis, and treatment [6].
In ophthalmology, deep learning—an artificial intelligence
technique—can potentially detect eye diseases, such as diabetic
retinopathy, glaucoma, nAMD, and retinopathy of prematurity,
as well as refractive errors [7]. Different ocular pathologies can
be identified using different imaging modalities. Multiple
imaging modalities are available for retinal vascular disease
diagnosis. Although the use of retinal fundus photography for
diagnosis is feasible, robust diagnosis may require further
imaging, such as through the use of optical coherence
tomography (OCT), chorioretinal angiography (ie, fluorescein
angiography [FA] and indocyanine green angiography [ICGA]),
and optical coherence tomography angiography (OCTA). Deep
learning has been applied for various imaging techniques. In
addition to color fundus images, which are commonly used for
detecting eye diseases [7], other imaging modalities are useful
in deep learning–based applications. For example, OCT has
been used for diagnosis and referral in patients with retinal
diseases [8,9], and OCTA has been used for identifying
nonperfusion areas in the retina [10].

Objective
Multimodal imaging in ophthalmology could improve the
accuracy of disease diagnosis. The increased application of
multiple imaging modalities for disease detection has led to
advancements in deep learning–assisted disease diagnosis. An
et al [11] used OCT combined with retinal fundus photography
for glaucoma diagnosis. Meanwhile, Vaghefi et al [12]
demonstrated an increased accuracy when using multimodal
imaging to train an algorithm for OCT, OCTA, and retinal
fundus photography for detecting dry AMD. However, little
research has investigated the use of deep learning techniques
in multimodal imaging for determining retinal vascular diseases.
In our study, we developed a deep learning–based model for
detecting retinal vascular diseases and diseases requiring
anti-VEGF treatment through the use of multimodal retinal
imaging, including color fundus photography, OCT, and FA
with or without ICGA (FA/ICGA).

Methods

Study Participants
In this retrospective study, we included patients who underwent
clinical examinations involving retinal fundus photography,
OCT, and FA/ICGA from 2013 to 2019 at Chang Gung
Memorial Hospital, Linkou Medical Center, Taipei and Keelung
branches. The retinal fundus photos were obtained using 1 of
the 2 color fundus cameras (Topcon Medical Systems; digital
non-mydriatic retinal camera: Canon). OCT was performed
using OCT machines (Heidelberg Engineering Inc; Avanti,
Optovue Inc), and FA/ICGA images were obtained using fundus
angiography machines (Heidelberg Engineering, Inc). The study
protocol was approved by the Institutional Review Board of
Chang Gung Memorial Hospital (no. 201900477B0), and the
study adhered to the tenets of the Declaration of Helsinki.

Data Classification
In our study, we identified retinal vascular diseases, including
DME, nAMD, mCNV, branch retinal vein occlusion (BRVO),
and central retinal vein occlusion (CRVO). Patients without a
history of anti-VEGF treatment were included. After review of
the multimodal images of each eye, disease diagnoses and need
for anti-VEGF treatment were determined by 3 trained retinal
ophthalmologists (LY, CHW, and SYP, who had 20, 10, and 6
years of clinical experience, respectively). Eye images were
first reviewed by 2 of the retinal ophthalmologists (CHW and
SYP). The ophthalmologists (CHW and SYP) excluded images
with poor quality or nondifferentiable diagnosis. When the
disease labels assigned by the ophthalmologists differed, a
consensus was reached through discussion among all 3 retinal
ophthalmologists. The senior retinal ophthalmologist (LY) again
confirmed the image labels that were consistent in the first
labeling. The patients were classified into DME, nAMD, mCNV,
BRVO, and CRVO groups according to their disease diagnosis.
The retinal ophthalmologists further defined diseases as
anti-VEGF treatment requiring or non–treatment requiring.
Based on the published literature, the treatment requirement
was defined separately in each retinal vascular disease according
to the features in different images [1,2,13-15]. Moreover, in the
control group, we included patients who had undergone retinal
fundus photography, OCT, and FA/ICGA examination for
clinical purposes, but the examinations revealed no remarkable
lesions or only lesions not related to retinal vascular diseases.
For multimodal imaging, retinal fundus photos were macular
centered; OCT images were fovea centered; and FA/ICGA
images, which were randomly selected from different phases,
were macular centered.

Data Management
The data management and image processing were performed
on the same eye. We collected images of retinal fundus
photography, OCT, and FA/ICGA from each eye. The flowchart
of the image collection process is displayed in Figure 1. First,
images were evaluated by the detection model to select and crop
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for different image types. The detection model, Cascade R-CNN
[16], was trained with 599 images in different imaging
modalities. The isolated images were first resized to 256 × 256
pixels. Subsequently, isolated images were augmented by slight
adjustment of the brightness and contrast level, foggy masking,
compression, rotation, horizontal flipping, and the addition of
side lines. Then, 25 images were randomly selected from
different imaging modalities and assembled. At least one image

was required from each imaging modality. The assembled image
package consisted of 25 segmented images from the same eye
based on a combination of images with various augmentations
and components of fundus retinal photography, OCT, and
FA/ICGA. The size of the assembled images was 1280 × 1280
pixels, consisting of 25 images with a size of 256 × 256. Then,
the image package was sent to the model for prediction.

Figure 1. Flowchart of multimodal image management and processing. OCT: optical coherence tomography; FA/ICGA: fluorescein angiography with
or without indocyanine green angiography.

Model Architecture
In our study, EfficientNetB4 was used as the convolutional
neural network (CNN) for the classification model (Figure 2).
Because our goal was to aid disease diagnosis and the detection
of disease severity, the models had 2 outputs: (1) disease
classification and (2) treatment requirement determination.
However, features indicating severity may differ based on the
disease. Our model first delivered disease prediction for
differentiating different retinal vascular diseases. We then

designed a layer consisting of a fully connected, reshaped, and
weighted sum to facilitate the model classification of treatment
requirement partially according to the results from the disease
prediction part. In addition, to visualize the features for model
prediction, heat maps were generated using gradient-weighted
class activation mapping [17], which used the gradient based
on the output scores to show the activation map for the specific
image. The features of the heat maps were highlighted in a
lighter color.
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Figure 2. Architecture of the deep learning prediction model. CNN: convolutional neural network; FCL: fully connected layer; GAP: global average
pooling.

Model Training
Image packages were split into training, validation, and testing
data sets in a 5:1:1 ratio, respectively. The model was trained
based on noisy student [18] pretrained weight and optimized
using an AdamW optimizer [19]. The model was trained 3 times
with different combinations of training and validation data sets.
We also tested different parameters including learning rates of
1e-4, 1e-5, and 5e-5, and batch sizes of 8, 12, and 16.
Subsequently, the model with the best performance in the
training and validation data sets was selected and evaluated in
the testing data set (Multimedia Appendices 1 and 2). The
learning rate and batch size were set as 5e-5 and 16, respectively.
Data preprocessing and the training and evaluation of the model
were completed on a NVIDIA DGX-1 server with the Ubuntu

18.04 operating system. Image preprocessing, including
conversion, augmentation, and assembly, was conducted using
ImageMagick 7.0.10 [20]. Images were evaluated and cropped
using Mmdetection 1.0.0 [21] and Pytorch 1.4.0 [22], and the
bounding box was labeled using CocoAnnotator [23].
Tensorflow 2.2 [24] was used as the framework to train and
evaluate the deep learning model.

Statistical Analysis
Receiver operating characteristic (ROC) curves were used for
differentiating different retinal vascular diseases and
treatment-requiring diseases, and the area under the curve (AUC)
was measured for each ROC curve. Moreover, the sensitivity,
specificity, and accuracy of the model were calculated.
Regarding model performance in predicting different retinal
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diseases, the AUC, sensitivity, specificity, and accuracy were
based on a one-versus-rest comparison. Additionally, a
confusion matrix was created and demonstrated sensitivity in
disease prediction. Statistical analysis was performed using the
Sklearn 0.23.2 package in Python (Python Software Foundation).

Results

Study Participants and Data Distribution
In total, 2992 eyes of 2185 patients were included in our study.
In the first labeling of 2992 eyes, 212 (7.08%) were differently

labeled by CHW and SYP, and a consensus was reached after
discussion among all 3 retinal ophthalmologists. Among the
2780 eyes with consistent labels in the first step, 144 (5.18%)
eyes had different labels after review by LY, and a consensus
was reached after discussion among all 3 retinal
ophthalmologists. The distribution of the included eyes is shown
in Table 1.

Table 1. Number of eyes included in the control and disease groups.

Non–treatment-requiringTreatment-requiringTotalGroups

N/AaN/Aa239Control

4217881209DMEb

1998091008nAMDc

15556211mCNVd

45144189BRVOe

35101136CRVOf

85518982992Total

aN/A: not applicable.
bDME: diabetic macular edema.
cnAMD: neovascular age-related macular degeneration.
dmCNV: myopic choroidal neovascularization.
eBRVO: branch retinal vein occlusion.
fCRVO: central retinal vein occlusion.

The control, DME, nAMD, mCNV, BRVO, and CRVO groups
consisted of 239, 1209, 1008, 211, 189, and 136 eyes,
respectively. Among all the disease groups, 788, 809, 56, 144,
and 101 eyes required treatment in the DME, nAMD, mCNV,
BRVO, and CRVO groups, respectively. Subsequently, 2138,

427, and 427 eyes were assigned to the training, validation, and
testing data sets, respectively. We used 5117 retinal fundus
photos, 9316 OCT images, and 20 922 FA/ICGA images, and
the distribution of the images in different data sets is shown in
Table 2.

Table 2. Distribution of image number used in different modalities for different data sets.

Testing

(n=427)

Validation

(n=427)

Training

(n=2138)

Total

(n=2992)

Modality

74670936625117Retinal fundus photos

1340127267049316OCTa

303129591493220922FA/ICGAb

aOCT: optical coherence tomography.
bFA/ICGA: fluorescein angiography with or without indocyanine green angiography.

Model Performance
Model performance was evaluated using the testing data set.
ROC curves are illustrated in Figure 3, and the AUC for each
curve was determined. For disease identification, the overall
AUC was 0.987, and the AUC was the highest in the mCNV
(0.996) and control (0.996) groups, followed by the DME
(0.995), nAMD (0.990), CRVO (0.988), and BRVO (0.959)
groups. For predicting diseases requiring anti-VEGF treatment,

the AUC was 0.969. Details regarding the model sensitivity and
specificity are provided in Table 3. For retinal vascular disease
prediction, the sensitivity was the highest for the control (0.971)
group, followed by the nAMD (0.956), DME (0.940), and
mCNV (0.933) groups, whereas the sensitivity of RVO
identification was the lowest (0.690 for BRVO and 0.769 for
CRVO). Regarding the prediction of diseases requiring
anti-VEGF treatment, the sensitivity was 0.904 and specificity
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was 0.945. The accuracy for disease prediction was the highest
in the control and mCNV (0.984) groups, followed by the BRVO
and CRVO (0.977), DME (0.967), and nAMD (0.963) groups.

The accuracy for the detection of treatment-requiring diseases
was 0.930. The confusion matrix is shown in Figure 4.

Figure 3. Receiver operating characteristic curves of the model performance for (A) predicting different retinal vascular diseases and (B) identifying
treatment-requiring diseases. AUC: area under the curve; BRVO: branch retinal vein occlusion; CRVO: central retinal vein occlusion; DME: diabetic
macular edema; mCNV: myopic choroidal neovascularization; nAMD: neovascular age-related macular degeneration.
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Table 3. Sensitivity, specificity, and accuracy of the model in the prediction of retinal vascular diseases and treatment-requiring diseases.

AccuracySpecificitySensitivityValue

0.9840.9850.971Control

0.9670.9880.940DMEa

0.9630.9660.956nAMDb

0.9840.9870.933mCNVc

0.9770.9970.690BRVOd

0.9770.9830.769CRVOe

0.9300.9450.904Treatment requirement

aDME: diabetic macular edema.
bnAMD: neovascular age-related macular degeneration.
cmCNV: myopic choroidal neovascularization.
dBRVO: branch retinal vein occlusion.
eCRVO: central retinal vein occlusion.

Figure 4. Confusion matrix demonstrating the performance of the prediction model in different retinal vascular diseases. BRVO: branch retinal vein
occlusion; CRVO: central retinal vein occlusion; DME: diabetic macular edema; mCNV: myopic choroidal neovascularization; nAMD: neovascular
age-related macular degeneration.

Heat Maps for Model Prediction
Heat maps for visual explanations of our model predictions
were generated using gradient-weighted class activation

mapping, and the samples are shown in Figure 5. In the heat
maps, the model could simultaneously identify the lesion in
different imaging modalities. Regarding different retinal vascular
diseases, the model had different weights in different image
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modalities. For example, in eyes with RVO, the model
highlighted the exudates and hemorrhage dot in retinal fundus
photos, ischemic area, and leaking point in FA/ICGA. In patients
requiring treatment for DME, the model highlighted retinal

vessels within the macula in retinal images, the central swelling
area in OCT images, and the leaking or staining lesions in
FA/ICGA images.

Figure 5. Sample heat maps generated by the prediction model in a true-positive patient with (A) treatment-requiring branch retinal vein occlusion,
(B) treatment-requiring diabetic macular edema, and (C) non–treatment-requiring age-related macular degeneration.
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Discussion

Main Findings
In this study, we used multimodal imaging to develop a deep
learning–based model for the prediction of retinal vascular
diseases, including DME, nAMD, mCNV, BRVO, and CRVO,
and to determine whether anti-VEGF treatment was required.
This model had average AUCs of 0.987 and 0.969 for predicting
retinal vascular diseases and for predicting treatment-requiring
diseases, respectively. The heat map shows that the model can
identify disease features through multimodal retinal imaging.

Ophthalmology Imaging in Deep Learning
Previous studies have proven the efficacy of using different
image modalities in deep learning–based models for predicting
retinal diseases. In addition to retinal fundus images for
identifying diabetic retinopathy, AMD, and glaucoma [7], a
deep learning model using OCT for retinal layer segmentation
and retinal disease identification was developed by the
DeepMind group [8]. Moreover, deep learning could help to
detect ischemic zones in retinal vascular diseases through the
use of ultra-wide-field FA [25]. The aforementioned studies
demonstrated that deep learning can be effectively applied for
a single retinal imaging modality. However, few investigations
have been conducted to study the application of deep learning
models for predicting diseases using more than one retinal
imaging modality. OCT and retinal fundus images have been
used concomitantly for dry AMD [26] and glaucoma [11]
diagnosis. However, previous studies have either used a single
imaging modality or focused on predicting a single retinal
disease. To date, few studies have evaluated the performance
of deep learning models with multimodal retinal imaging for
predicting multiple retinal vascular diseases.

Multimodal Imaging–Based Deep Learning Model for
Retinal Vascular Diseases
To our knowledge, this is the first study to use multimodal deep
learning–based architecture for detecting multiple retinal
vascular diseases. In our study, we used multiple image
modalities, including retinal fundus photography, OCT, and
FA/ICGA, for predicting neovascular retinal diseases, including
DME, nAMD, mCNV, and RVO [27]. Furthermore, this model
can identify diseases requiring anti-VEGF treatment. In clinical
settings, multimodal retinal images are crucial for
ophthalmologists to treat retinal diseases. Occasionally, a feature
in a retinal image modality may be shared by many retinal
diseases. For example, increased central retinal thickness in
OCT can be present in DME, nAMD, mCNV, and RVO, but
retinal fundus images may vary among these diseases. The
features of nAMD and mCNV may appear similar in retinal
fundus images, and an ICGA is needed for differentiating them
[2]. Therefore, multimodal imaging is required for the diagnosis
and treatment determination of different retinal diseases [28].
Our model with multimodal imaging was similar to real-world
ophthalmology practice with regard to the diagnosis for multiple
retinal diseases and determination of disease severity. In
real-world practice, the model may help with the screening of
the diseases and treatment-requiring status, saving
ophthalmologist’s time and effort on reviewing the images.

Although the AUC of different retinal vascular diseases
demonstrated excellent differentiation, defined as AUC > 0.8
[29], the RVO groups showed relatively low sensitivity. This
might be related to the low number of eyes used for model
training. In the future investigation, the generative adversarial
network may be implemented to synthesize ophthalmic images
and solve the problem of an inadequate number of images [30].

Detection of Treatment-Requiring Retinal Vascular
Diseases
Because expenses involved in using anti-VEGF drugs in the
treatment of retinal vascular diseases are high, patients being
administered these drugs may need to meet strict criteria to
claim reimbursement from insurance companies in many regions
[31]. In Taiwan, the use of intravitreal anti-VEGF treatment for
DME, nAMD, mCNV, and RVO requires prereview by members
of the Taiwan National Health Insurance program for
reimbursement [32,33]. An efficient and accurate method for
evaluating a patient’s retinal vascular disease status and disease
severity may be essential. Our model could not only aid
ophthalmologists in disease diagnosis and in determining the
need for anti-VEGF treatment for retinal vascular diseases but
also help with the prereview of anti-VEGF treatment.

Image Variability for the Model
The model developed in the present study is highly flexible in
terms of image input. It does not depend on a fixed image
distribution for different modalities. The only requirement is at
least one image for each imaging modality. We investigated the
model accuracy for packages with different numbers of images,
and 25 images in a 5 × 5 matrix had the highest performance.
Moreover, we tested different CNN models and different
compositions of imaging modalities to determine which could
achieve the highest accuracy (Multimedia Appendix 3). Using
the CNN of EfficientNetB4 with images of retinal fundus
photography, OCT, and FA/ICGA had the best performance.
The images from the same eye can be randomly arranged or
augmented during the preprocessing stage before being used in
the prediction model. The visualized heat maps show that the
model has the ability of simultaneous differentiation of retinal
diseases with the use of different imaging modalities. With
DME, for example, both the central retina in OCT and the
leaking points in FA had high weightage. For BRVO, the model
highlights areas with hemorrhage in retinal fundus images,
increased retinal thickness in OCT images, and nonperfusion
in FA images. These findings are compatible with the clinical
features of retinal diseases [34,35] and indicate that our model
produces reasonable and reliable predictions of retinal vascular
diseases.

False Prediction of the Model
Regarding false predictions of retinal diseases, sample heat
maps are presented in Figure 6. We observed that the model
provided wrong predictions mostly for eyes with advanced-stage
diseases or coexisting retinal diseases. Retinal vascular diseases
may share undistinguishable features in advanced stages. For
example, in an advanced stage of a disease, retinal hemorrhage,
retinal nonperfusion, and macular edema could appear to have
the same prominence in CRVO as in DME and advanced
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diabetic retinopathy [36,37]. The coexistence of diabetic
retinopathy with DME may produce clinical features similar to
those of RVO with macular edema [38]. Additionally, other
retinal disorders, such as central serous chorioretinopathy, may
display features similar to those of retinal vascular diseases and

lead to misdiagnosis by the model. As for diseases requiring
anti-VEGF treatment, false prediction was noted in cases with
borderline disease activity or other retinal disorders, such as
central serous chorioretinopathy and epiretinal membrane, for
which anti-VEGF treatment is not indicated.

Figure 6. Sample heat maps for false prediction of the model: (A) false prediction of treatment-requiring diabetic macular edema (DME) in a patient
with coexisting DME and central retinal vein occlusion (CRVO); (B) false prediction of treatment-requiring age-related macular degeneration (AMD)
in a patient with central serous chorioretinopathy; (C) false prediction of treatment-requiring DME in a patient with epiretinal membrane, lamellar
macular hole, and diabetic retinopathy; (D) false prediction of treatment-requiring DME in a patient with advanced CRVO.

Study Limitations
This study had some limitations. First, the model requires the
use of multiple image modalities, including OCT and FA/ICGA,
which some eye-care facilities may not be equipped with.
Although the study focused on deep learning–based prediction
with multimodal imaging, clinical application may require more
investigation. Second, images used in the study underwent
quality checks. The efficacy during application to a real-world
clinical setting may be affected by the patient’s condition and
the image quality [39]. Additionally, some ocular diseases
affecting image signal transmission could affect image quality
and retinal disease diagnosis [40,41]. Third, images from
different machine manufacturers not included in our study might
have affected the model accuracy. A transfer learning approach
could be adopted in cases where images are obtained from
different machine manufacturers. Fourth, we did not consider
other retinal vascular diseases, such as retinal neovascularization
caused by uveitis or infection. The model is inapplicable to
diseases not included in our study. Fifth, we only identified

disease statuses that may require anti-VEGF treatment. Disease
statuses requiring other treatments, such as laser therapy, were
not analyzed in the current study. Furthermore, images of the
most advanced disease stages with features such as severe
vitreous hemorrhage or diffused chorioretinal atrophy would
have been excluded due to nondifferentiable diagnosis. Sixth,
a relatively small number of eyes in the RVO groups led to
decreased accuracy in disease prediction and more data may be
needed for better model performance. Last, the study group only
included patients without previous anti-VEGF treatment. The
accuracy in patients with a history of anti-VEGF treatment needs
further investigation.

Conclusions
We developed a deep learning–based model using multimodal
imaging for predicting retinal vascular diseases and determining
whether anti-VEGF treatment is required. This model can
facilitate the differentiation of DME, nAMD, mCNV, BRVO,
and CRVO and help in determining the indication for anti-VEGF
treatment.
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the curve; CF: color fundus photography; CNN: convolutional neural network; FA/ICGA: fluorescein angiography with or without
indocyanine green angiography; OCT: optical coherence tomography.
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