Published on in Vol 9, No 1 (2021): January

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/24207, first published .
Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach

Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach

Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach

Journals

  1. Adamidi E, Mitsis K, Nikita K. Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review. Computational and Structural Biotechnology Journal 2021;19:2833 View
  2. Kaissis G, Ziller A, Passerat-Palmbach J, Ryffel T, Usynin D, Trask A, Lima I, Mancuso J, Jungmann F, Steinborn M, Saleh A, Makowski M, Rueckert D, Braren R. End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nature Machine Intelligence 2021;3(6):473 View
  3. Born J, Beymer D, Rajan D, Coy A, Mukherjee V, Manica M, Prasanna P, Ballah D, Guindy M, Shaham D, Shah P, Karteris E, Robertus J, Gabrani M, Rosen-Zvi M. On the role of artificial intelligence in medical imaging of COVID-19. Patterns 2021;2(6):100269 View
  4. Zheng Z, Zhou Y, Sun Y, Wang Z, Liu B, Li K. Applications of federated learning in smart cities: recent advances, taxonomy, and open challenges. Connection Science 2022;34(1):1 View
  5. Soper B, Cadena J, Nguyen S, Chan K, Kiszka P, Womack L, Work M, Duggan J, Haller S, Hanrahan J, Kennedy D, Mukundan D, Ray P. Dynamic modeling of hospitalized COVID-19 patients reveals disease state–dependent risk factors. Journal of the American Medical Informatics Association 2022;29(5):864 View
  6. Sievering A, Wohlmuth P, Geßler N, Gunawardene M, Herrlinger K, Bein B, Arnold D, Bergmann M, Nowak L, Gloeckner C, Koch I, Bachmann M, Herborn C, Stang A. Comparison of machine learning methods with logistic regression analysis in creating predictive models for risk of critical in-hospital events in COVID-19 patients on hospital admission. BMC Medical Informatics and Decision Making 2022;22(1) View
  7. Liu C, Ta C, Havrilla J, Nestor J, Spotnitz M, Geneslaw A, Hu Y, Chung W, Wang K, Weng C. OARD: Open annotations for rare diseases and their phenotypes based on real-world data. The American Journal of Human Genetics 2022;109(9):1591 View
  8. Jiang J, Chan L, Nadkarni G. The promise of artificial intelligence for kidney pathophysiology. Current Opinion in Nephrology & Hypertension 2022;31(4):380 View
  9. Lo J, Yu T, Ma D, Zang P, Owen J, Zhang Q, Wang R, Beg M, Lee A, Jia Y, Sarunic M. Federated Learning for Microvasculature Segmentation and Diabetic Retinopathy Classification of OCT Data. Ophthalmology Science 2021;1(4):100069 View
  10. Wynants L, Van Calster B, Collins G, Riley R, Heinze G, Schuit E, Albu E, Arshi B, Bellou V, Bonten M, Dahly D, Damen J, Debray T, de Jong V, De Vos M, Dhiman P, Ensor J, Gao S, Haller M, Harhay M, Henckaerts L, Heus P, Hoogland J, Hudda M, Jenniskens K, Kammer M, Kreuzberger N, Lohmann A, Levis B, Luijken K, Ma J, Martin G, McLernon D, Navarro C, Reitsma J, Sergeant J, Shi C, Skoetz N, Smits L, Snell K, Sperrin M, Spijker R, Steyerberg E, Takada T, Tzoulaki I, van Kuijk S, van Bussel B, van der Horst I, Reeve K, van Royen F, Verbakel J, Wallisch C, Wilkinson J, Wolff R, Hooft L, Moons K, van Smeden M. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ 2020:m1328 View
  11. Song W, Zhang L, Liu L, Sainlaire M, Karvar M, Kang M, Pullman A, Lipsitz S, Massaro A, Patil N, Jasuja R, Dykes P. Predicting hospitalization of COVID-19 positive patients using clinician-guided machine learning methods. Journal of the American Medical Informatics Association 2022;29(10):1661 View
  12. Jung C, Mamandipoor B, Fjølner J, Bruno R, Wernly B, Artigas A, Bollen Pinto B, Schefold J, Wolff G, Kelm M, Beil M, Sviri S, van Heerden P, Szczeklik W, Czuczwar M, Elhadi M, Joannidis M, Oeyen S, Zafeiridis T, Marsh B, Andersen F, Moreno R, Cecconi M, Leaver S, De Lange D, Guidet B, Flaatten H, Osmani V. Disease-Course Adapting Machine Learning Prognostication Models in Elderly Patients Critically Ill With COVID-19: Multicenter Cohort Study With External Validation. JMIR Medical Informatics 2022;10(3):e32949 View
  13. Prayitno , Shyu C, Putra K, Chen H, Tsai Y, Hossain K, Jiang W, Shae Z. A Systematic Review of Federated Learning in the Healthcare Area: From the Perspective of Data Properties and Applications. Applied Sciences 2021;11(23):11191 View
  14. Joshi M, Pal A, Sankarasubbu M. Federated Learning for Healthcare Domain - Pipeline, Applications and Challenges. ACM Transactions on Computing for Healthcare 2022;3(4):1 View
  15. He F, Page J, Weinberg K, Mishra A. The Development and Validation of Simplified Machine Learning Algorithms to Predict Prognosis of Hospitalized Patients With COVID-19: Multicenter, Retrospective Study. Journal of Medical Internet Research 2022;24(1):e31549 View
  16. Shin Y, Noh G, Jeong I, Chun J. Securing a Local Training Dataset Size in Federated Learning. IEEE Access 2022;10:104135 View
  17. Rahman A, Hossain M, Muhammad G, Kundu D, Debnath T, Rahman M, Khan M, Tiwari P, Band S. Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues. Cluster Computing 2023;26(4):2271 View
  18. Dayan I, Roth H, Zhong A, Harouni A, Gentili A, Abidin A, Liu A, Costa A, Wood B, Tsai C, Wang C, Hsu C, Lee C, Ruan P, Xu D, Wu D, Huang E, Kitamura F, Lacey G, de Antônio Corradi G, Nino G, Shin H, Obinata H, Ren H, Crane J, Tetreault J, Guan J, Garrett J, Kaggie J, Park J, Dreyer K, Juluru K, Kersten K, Rockenbach M, Linguraru M, Haider M, AbdelMaseeh M, Rieke N, Damasceno P, e Silva P, Wang P, Xu S, Kawano S, Sriswasdi S, Park S, Grist T, Buch V, Jantarabenjakul W, Wang W, Tak W, Li X, Lin X, Kwon Y, Quraini A, Feng A, Priest A, Turkbey B, Glicksberg B, Bizzo B, Kim B, Tor-Díez C, Lee C, Hsu C, Lin C, Lai C, Hess C, Compas C, Bhatia D, Oermann E, Leibovitz E, Sasaki H, Mori H, Yang I, Sohn J, Murthy K, Fu L, de Mendonça M, Fralick M, Kang M, Adil M, Gangai N, Vateekul P, Elnajjar P, Hickman S, Majumdar S, McLeod S, Reed S, Gräf S, Harmon S, Kodama T, Puthanakit T, Mazzulli T, de Lavor V, Rakvongthai Y, Lee Y, Wen Y, Gilbert F, Flores M, Li Q. Federated learning for predicting clinical outcomes in patients with COVID-19. Nature Medicine 2021;27(10):1735 View
  19. Xu D, Li T, Li Y, Su X, Tarkoma S, Jiang T, Crowcroft J, Hui P. Edge Intelligence: Empowering Intelligence to the Edge of Network. Proceedings of the IEEE 2021;109(11):1778 View
  20. Shanbehzadeh M, Haghiri H, Afrash M, Amraei M, Erfannia L, Kazemi-Arpanahi H. Comparison of Machine Learning Tools for the Prediction of ICU Admission in COVID-19 Hospitalized Patients. Shiraz E-Medical Journal 2022;23(5) View
  21. Duan S, Liu C, Han P, Jin X, Zhang X, Xiang X, Pan H, Yan X. Fed-DNN-Debugger: Automatically Debugging Deep Neural Network Models in Federated Learning. Security and Communication Networks 2023;2023:1 View
  22. Lu S, Gao Z, Xu Q, Jiang C, Zhang A, Wang X. Class-Imbalance Privacy-Preserving Federated Learning for Decentralized Fault Diagnosis With Biometric Authentication. IEEE Transactions on Industrial Informatics 2022;18(12):9101 View
  23. Dang T, Lan X, Weng J, Feng M. Federated Learning for Electronic Health Records. ACM Transactions on Intelligent Systems and Technology 2022;13(5):1 View
  24. Bharati S, Mondal M, Podder P, Prasath V. Federated learning: Applications, challenges and future directions. International Journal of Hybrid Intelligent Systems 2022;18(1-2):19 View
  25. Oh W, Nadkarni G. Federated Learning in Health care Using Structured Medical Data. Advances in Kidney Disease and Health 2023;30(1):4 View
  26. Nguyen T, Ran A, Hu X, Yang D, Jiang M, Dou Q, Cheung C. Federated Learning in Ocular Imaging: Current Progress and Future Direction. Diagnostics 2022;12(11):2835 View
  27. Neranjan Thilakarathne N, Muneeswari G, Parthasarathy V, Alassery F, Hamam H, Kumar Mahendran R, Shafiq M. Federated Learning for Privacy-Preserved Medical Internet of Things. Intelligent Automation & Soft Computing 2022;33(1):157 View
  28. Gopukumar D, Ghoshal A, Zhao H. Predicting Readmission Charges Billed by Hospitals: Machine Learning Approach. JMIR Medical Informatics 2022;10(8):e37578 View
  29. Antunes R, André da Costa C, Küderle A, Yari I, Eskofier B. Federated Learning for Healthcare: Systematic Review and Architecture Proposal. ACM Transactions on Intelligent Systems and Technology 2022;13(4):1 View
  30. Nopour R, Erfannia L, Mehrabi N, Mashoufi M, Mahdavi A, Shanbehzadeh M. Comparison of Two Statistical Models for Predicting Mortality in COVID-19 Patients in Iran. Shiraz E-Medical Journal 2022;23(6) View
  31. Kumaresan M, Kumar M, Muthukumar N. Analysis of mobility based COVID-19 epidemic model using Federated Multitask Learning. Mathematical Biosciences and Engineering 2022;19(10):9983 View
  32. Alamoodi A, Zaidan B, Albahri O, Garfan S, Ahmaro I, Mohammed R, Zaidan A, Ismail A, Albahri A, Momani F, Al-Samarraay M, Jasim A, R.Q.Malik . Systematic review of MCDM approach applied to the medical case studies of COVID-19: trends, bibliographic analysis, challenges, motivations, recommendations, and future directions. Complex & Intelligent Systems 2023;9(4):4705 View
  33. Li H, Li C, Wang J, Yang A, Ma Z, Zhang Z, Hua D. Review on security of federated learning and its application in healthcare. Future Generation Computer Systems 2023;144:271 View
  34. Deng T, Hamdan H, Yaakob R, Kasmiran K. Personalized Federated Learning for In-Hospital Mortality Prediction of Multi-Center ICU. IEEE Access 2023;11:11652 View
  35. Majeed A, Zhang X, Hwang S. Applications and Challenges of Federated Learning Paradigm in the Big Data Era with Special Emphasis on COVID-19. Big Data and Cognitive Computing 2022;6(4):127 View
  36. Naseem M, Arshad H, Hashmi S, Irfan F, Ahmed F. Predicting mortality in SARS-COV-2 (COVID-19) positive patients in the inpatient setting using a novel deep neural network. International Journal of Medical Informatics 2021;154:104556 View
  37. Rajput A, Raman B. Privacy-Preserving Distribution and Access Control of Personalized Healthcare Data. IEEE Transactions on Industrial Informatics 2022;18(8):5584 View
  38. Shanbehzadeh M, Nopour R, Kazemi-Arpanahi H. Design of an artificial neural network to predict mortality among COVID-19 patients. Informatics in Medicine Unlocked 2022;31:100983 View
  39. Laxmi Lydia E, Anupama C, Beno A, Elhoseny M, Alshehri M, Selim M. RETRACTED ARTICLE: Cognitive computing-based COVID-19 detection on Internet of things-enabled edge computing environment. Soft Computing 2021 View
  40. Nopour R, Shanbezadeh M, Kazemi-Arpanahi H. Predicting intubation risk among COVID-19 hospitalized patients using artificial neural networks. Journal of Education and Health Promotion 2023;12(1) View
  41. Li W, Tong J, Anjum M, Mohammed N, Chen Y, Jiang X. Federated learning algorithms for generalized mixed-effects model (GLMM) on horizontally partitioned data from distributed sources. BMC Medical Informatics and Decision Making 2022;22(1) View
  42. Tang P, Zheng Y, Qiu W, Wang H, Guo J, Huang Z, Liu Z. Research on Anti-Alzheimer’s Traditional Chinese Medicine with Data Security: Datasets, Methods, and Evaluation. Security and Communication Networks 2022;2022:1 View
  43. AlKnawy B, Kozlakidis Z, Tarkoma S, Bates D, Honkela A, Crooks G, Rhee K, McKillop M. Digital public health leadership in the global fight for health security. BMJ Global Health 2023;8(2):e011454 View
  44. Varzaneh Z, Orooji A, Erfannia L, Shanbehzadeh M. A new COVID-19 intubation prediction strategy using an intelligent feature selection and K-NN method. Informatics in Medicine Unlocked 2022;28:100825 View
  45. Bottino F, Tagliente E, Pasquini L, Napoli A, Lucignani M, Figà-Talamanca L, Napolitano A. COVID Mortality Prediction with Machine Learning Methods: A Systematic Review and Critical Appraisal. Journal of Personalized Medicine 2021;11(9):893 View
  46. Wang E, Li Y, Ming R, Wei J, Du P, Zhou P, Zong S, Xiao H. The Prognostic Value and Immune Landscapes of a m6A/m5C/m1A-Related LncRNAs Signature in Head and Neck Squamous Cell Carcinoma. Frontiers in Cell and Developmental Biology 2021;9 View
  47. Rajendran S, Xu Z, Pan W, Ghosh A, Wang F, Frasch M. Data heterogeneity in federated learning with Electronic Health Records: Case studies of risk prediction for acute kidney injury and sepsis diseases in critical care. PLOS Digital Health 2023;2(3):e0000117 View
  48. Chaddad A, Lu Q, Li J, Katib Y, Kateb R, Tanougast C, Bouridane A, Abdulkadir A. Explainable, Domain-Adaptive, and Federated Artificial Intelligence in Medicine. IEEE/CAA Journal of Automatica Sinica 2023;10(4):859 View
  49. Yang L, He J, Fu Y, Luo Z. Federated Learning for Medical Imaging Segmentation via Dynamic Aggregation on Non-IID Data Silos. Electronics 2023;12(7):1687 View
  50. Diniz J, Vasconcelos H, Souza J, Rb-Silva R, Ameijeiras-Rodriguez C, Freitas A. Comparing Decentralized Learning Methods for Health Data Models to Nondecentralized Alternatives: Protocol for a Systematic Review. JMIR Research Protocols 2023;12:e45823 View
  51. Lee G, Park J, Kim J, Kim Y, Choi B, Park R, Rhee S, Shin S. Feasibility Study of Federated Learning on the Distributed Research Network of OMOP Common Data Model. Healthcare Informatics Research 2023;29(2):168 View
  52. Giuste F, He L, Lais P, Shi W, Zhu Y, Hornback A, Tsai C, Isgut M, Anderson B, Wang M. Early and fair COVID-19 outcome risk assessment using robust feature selection. Scientific Reports 2023;13(1) View
  53. Li S, Liu P, Nascimento G, Wang X, Leite F, Chakraborty B, Hong C, Ning Y, Xie F, Teo Z, Ting D, Haddadi H, Ong M, Peres M, Liu N. Federated and distributed learning applications for electronic health records and structured medical data: a scoping review. Journal of the American Medical Informatics Association 2023;30(12):2041 View
  54. Chen R, Wang J, Williamson D, Chen T, Lipkova J, Lu M, Sahai S, Mahmood F. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nature Biomedical Engineering 2023;7(6):719 View
  55. Natanov D, Avihai B, McDonnell E, Lee E, Cook B, Altomare N, Ko T, Chaia A, Munoz C, Ouellette S, Nyalakonda S, Cederbaum V, Parikh P, Blaser M, Moscona A. Predicting COVID-19 prognosis in hospitalized patients based on early status. mBio 2023;14(5) View
  56. Wang J, Ma F. Federated learning for rare disease detection: a survey. Rare Disease and Orphan Drugs Journal 2023;2(4) View
  57. Moe S, Kim B, Khan A, Rongxu X, Tuan N, Kim K, Kim D. Collaborative Worker Safety Prediction Mechanism Using Federated Learning Assisted Edge Intelligence in Outdoor Construction Environment. IEEE Access 2023;11:109010 View
  58. Tang J, Ding X, Hu D, Guo B, Shen Y, Ma P, Jiang Y. FedRAD: Heterogeneous Federated Learning via Relational Adaptive Distillation. Sensors 2023;23(14):6518 View
  59. Li S, Ning Y, Ong M, Chakraborty B, Hong C, Xie F, Yuan H, Liu M, Buckland D, Chen Y, Liu N. FedScore: A privacy-preserving framework for federated scoring system development. Journal of Biomedical Informatics 2023;146:104485 View
  60. Arunachalam A, Ravi V, Acharya V, Pham T. Toward Data-Model-Agnostic Autonomous Machine-Generated Data Labeling and Annotation Platform: COVID-19 Autoannotation Use Case. IEEE Transactions on Engineering Management 2023;70(8):2695 View
  61. Chang H, Yu J, Lee G, Heo S, Lee S, Hwang S, Yoon H, Cha W, Shin T, Sim M, Jo I, Kim T. Clinical support system for triage based on federated learning for the Korea triage and acuity scale. Heliyon 2023;9(8):e19210 View
  62. Verzellesi L, Botti A, Bertolini M, Trojani V, Carlini G, Nitrosi A, Monelli F, Besutti G, Castellani G, Remondini D, Milanese G, Croci S, Sverzellati N, Salvarani C, Iori M. Machine and Deep Learning Algorithms for COVID-19 Mortality Prediction Using Clinical and Radiomic Features. Electronics 2023;12(18):3878 View
  63. Badidi E. Edge AI for Early Detection of Chronic Diseases and the Spread of Infectious Diseases: Opportunities, Challenges, and Future Directions. Future Internet 2023;15(11):370 View
  64. Zukaib U, Cui X, Hassan M, Harris S, Hadi H, Zheng C. Blockchain and Machine Learning in EHR Security: A Systematic Review. IEEE Access 2023;11:130230 View
  65. Pan W, Xu Z, Rajendran S, Wang F. An adaptive federated learning framework for clinical risk prediction with electronic health records from multiple hospitals. Patterns 2024;5(1):100898 View
  66. Quinn T, Hess J, Marshe V, Barnett M, Hauschild A, Maciukiewicz M, Elsheikh S, Men X, Schwarz E, Trakadis Y, Breen M, Barnett E, Zhang-James Y, Ahsen M, Cao H, Chen J, Hou J, Salekin A, Lin P, Nicodemus K, Meyer-Lindenberg A, Bichindaritz I, Faraone S, Cairns M, Pandey G, Müller D, Glatt S. A primer on the use of machine learning to distil knowledge from data in biological psychiatry. Molecular Psychiatry 2024;29(2):387 View
  67. Malik H, Anees T. Federated learning with deep convolutional neural networks for the detection of multiple chest diseases using chest x-rays. Multimedia Tools and Applications 2024;83(23):63017 View
  68. Ramos P, Marcilio I, Bento A, Penna G, de Oliveira J, Khouri R, Andrade R, Carreiro R, Oliveira V, Galvão L, Landau L, Barreto M, van der Horst K, Barral-Netto M. Combining Digital and Molecular Approaches Using Health and Alternate Data Sources in a Next-Generation Surveillance System for Anticipating Outbreaks of Pandemic Potential. JMIR Public Health and Surveillance 2024;10:e47673 View
  69. Li X, Qu Z, Tang B, Lu Z. FedLGA: Toward System-Heterogeneity of Federated Learning via Local Gradient Approximation. IEEE Transactions on Cybernetics 2024;54(1):401 View
  70. Qayyum A, Ahmad K, Ahsan M, Al-Fuqaha A, Qadir J. Collaborative Federated Learning for Healthcare: Multi-Modal COVID-19 Diagnosis at the Edge. IEEE Open Journal of the Computer Society 2022;3:172 View
  71. Chai Y, Liu H, Zhu H, Pan Y, Zhou A, Liu H, Liu J, Qian Y. A profile similarity-based personalized federated learning method for wearable sensor-based human activity recognition. Information & Management 2024:103922 View
  72. SINACI A, GENCTURK M, ALVAREZ-ROMERO C, ERTURKMEN G, MARTINEZ-GARCIA A, ESCALONA-CUARESMA M, PARRA-CALDERON C. Privacy-Preserving Federated Machine Learning on FAIR Health Data: A Real-World Application. Computational and Structural Biotechnology Journal 2024 View
  73. AlSereidi A, Salih S, Mohammed R, Zaidan A, Albayati H, Pamucar D, Albahri A, Zaidan B, Shaalan K, Al-Obaidi J, Albahri O, Alamoodi A, Abdul Majid N, Garfan S, Al-Samarraay M, Jasim A, Baqer M. Novel Federated Decision Making for Distribution of Anti-SARS-CoV-2 Monoclonal Antibody to Eligible High-Risk Patients. International Journal of Information Technology & Decision Making 2024;23(01):197 View
  74. Fang C, Dziedzic A, Zhang L, Oliva L, Verma A, Razak F, Papernot N, Wang B. Decentralised, collaborative, and privacy-preserving machine learning for multi-hospital data. eBioMedicine 2024;101:105006 View
  75. Wang Y, Zhang R, Yang Q, Zhou Q, Zhang S, Fan Y, Huang L, Li K, Zhou F. FairCare: Adversarial training of a heterogeneous graph neural network with attention mechanism to learn fair representations of electronic health records. Information Processing & Management 2024;61(3):103682 View
  76. Vo V, Shin T, Yang H, Kang S, Kim S. A comparison between centralized and asynchronous federated learning approaches for survival outcome prediction using clinical and PET data from non-small cell lung cancer patients. Computer Methods and Programs in Biomedicine 2024;248:108104 View
  77. Kolobkov D, Mishra Sharma S, Medvedev A, Lebedev M, Kosaretskiy E, Vakhitov R. Efficacy of federated learning on genomic data: a study on the UK Biobank and the 1000 Genomes Project. Frontiers in Big Data 2024;7 View
  78. Rauniyar A, Hagos D, Jha D, Håkegård J, Bagci U, Rawat D, Vlassov V. Federated Learning for Medical Applications: A Taxonomy, Current Trends, Challenges, and Future Research Directions. IEEE Internet of Things Journal 2024;11(5):7374 View
  79. Giuseppi A, Manfredi S, Menegatti D, Poli C, Pietrabissa A. Decentralised Federated Learning for Hospital Networks With Application to COVID-19 Detection. IEEE Access 2022;10:92681 View
  80. Bate S, Stokes V, Greenlee H, Goh K, Whiting G, Kitchen G, Martin G, Parker A, Wilson A. External Validation of Prognostic Models in Critical Care: A Cautionary Tale From COVID-19 Pneumonitis. Critical Care Explorations 2024;6(4):e1067 View
  81. Sheth V, Priyal A, Mehta K, Desai N, Shah M. Schematized study for tackling COVID-19 with Machine Learning (ML), Artificial Intelligence (AI), and Internet of Things (IoT). Intelligent Pharmacy 2024 View
  82. Bartenschlager C, Gassner U, Römmele C, Brunner J, Schlögl-Flierl K, Ziethmann P. The AI ethics of digital COVID-19 diagnosis and their legal, medical, technological, and operational managerial implications. Artificial Intelligence in Medicine 2024;152:102873 View
  83. Singh K, Kaur N, Prabhu A. Combating COVID-19 Crisis using Artificial Intelligence (AI) Based Approach: Systematic Review. Current Topics in Medicinal Chemistry 2024;24(8):737 View
  84. Choi G, Cha W, Lee S, Shin S. Survey of Medical Applications of Federated Learning. Healthcare Informatics Research 2024;30(1):3 View
  85. Liu L, Song W, Patil N, Sainlaire M, Jasuja R, Dykes P. Predicting COVID-19 severity: Challenges in reproducibility and deployment of machine learning methods. International Journal of Medical Informatics 2023;179:105210 View
  86. Alie M, Negesse Y, Kindie K, Merawi D. Machine learning algorithms for predicting COVID-19 mortality in Ethiopia. BMC Public Health 2024;24(1) View
  87. Yordanov T, Ravelli A, Amiri S, Vis M, Houterman S, Van der Voort S, Abu-Hanna A. Performance of federated learning-based models in the Dutch TAVI population was comparable to central strategies and outperformed local strategies. Frontiers in Cardiovascular Medicine 2024;11 View
  88. Cho H, Froelicher D, Dokmai N, Nandi A, Sadhuka S, Hong M, Berger B. Privacy-Enhancing Technologies in Biomedical Data Science. Annual Review of Biomedical Data Science 2024;7(1):317 View
  89. Malik H, Naeem A, Naqvi R, Loh W. DMFL_Net: A Federated Learning-Based Framework for the Classification of COVID-19 from Multiple Chest Diseases Using X-rays. Sensors 2023;23(2):743 View
  90. Ducange P, Marcelloni F, Renda A, Ruffini F. Federated Learning of XAI Models in Healthcare: A Case Study on Parkinson’s Disease. Cognitive Computation 2024 View

Books/Policy Documents

  1. Wang J, Qian C, Cui S, Glass L, Ma F. Machine Learning and Knowledge Discovery in Databases. View
  2. Malla R, Katneni V. Computational Methods in Drug Discovery and Repurposing for Cancer Therapy. View
  3. Georgoutsos A, Kerasiotis P, Kantere V. Web Information Systems Engineering – WISE 2023. View
  4. Mena-Camilo E, Hernández-Nava G, Leyva-López S, Salazar-Colores S. XLVI Mexican Conference on Biomedical Engineering. View
  5. Jabir K, Thirumurthi Raja A. Computational Intelligence for Clinical Diagnosis. View
  6. Dixit S, Gupta C. Recent Trends in Image Processing and Pattern Recognition. View
  7. Kondaveeti H, Simhadri C, Mangapathi S, Vatsavayi V. Federated Learning and Privacy-Preserving in Healthcare AI. View
  8. Pradhan B, Biswas D, Neelapu B, Sivaraman J, Pal K. Advances in Artificial Intelligence. View
  9. Obakhena H, Imoize A, Anyasi F. Federated Learning for Digital Healthcare Systems. View
  10. da Costa C, Zeiser F, da Rosa Righi R, Antunes R, Alegretti A, Bertoni A, de Oliveira Ramos G, de Mello B, Vanin F, Bertoletti O, Rigo S. IoT and ML for Information Management: A Smart Healthcare Perspective. View