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Abstract

Background: Machine learning models require large datasets that may be siloed across different health care institutions. Machine
learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability.

Objective: We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data
across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days.

Methods: Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System.
Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron
(MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites,
and a federated model that only shared parameters with a central aggregator.
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Results: The LASSOfederated model outperformed the LASSOlocal model at 3 hospitals, and the MLPfederated model performed
better than the MLPlocal model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The
LASSOpooled model outperformed the LASSOfederated model at all hospitals, and the MLPfederated model outperformed the MLPpooled

model at 2 hospitals.

Conclusions: The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive
models without compromising patient privacy.

(JMIR Med Inform 2021;9(1):e24207) doi: 10.2196/24207
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Introduction

COVID-19 has led to over 1 million deaths worldwide and other
devastating outcomes [1]. The accurate prediction of COVID-19
outcomes requires data from large, diverse patient populations;
however, pertinent data are siloed. Although many studies have
produced significant findings for COVID-19 outcomes by using
single-hospital data, larger representation from additional
populations is needed for generalizability, especially for the
generalizability of machine learning applications [2-11].
Large-scale initiatives have been combining local meta-analysis
and statistics data derived from several hospitals, but this
framework does not provide information on patient trajectories
and does not allow for the joint modeling of data for predictive
analysis [12,13].

In light of patient privacy, federated learning has emerged as a
promising strategy, particularly in the context of COVID-19
[14]. Federated learning allows for the decentralized refinement
of independently built machine learning models via the iterative
exchange of model parameters with a central aggregator, without
sharing raw data. Several studies have assessed machine learning
models that use federated learning in the context of COVID-19
and have shown promise. Kumar et al. built a blockchain-based
federated learning schema and achieved enhanced sensitivity
for detecting COVID-19 from lung computed tomography scans
[15]. Additionally, Xu et al. used deep learning to identify
COVID-19 from computed tomography scans from multiple
hospitals in China, and found that models built on data from

hospitals in 1 region did not generalize well to hospitals in other
regions. However, they were able to achieve considerable
performance improvements when they used a federated learning
approach [16]. A more detailed background on COVID-19,
machine learning in the context of COVID-19, challenges for
multi-institutional collaborations, and federated learning can
be found in Multimedia Appendices 1-8.

Although federated learning approaches have been proposed,
to our knowledge there have been no published studies that
implement, or assess the utility of, federated learning to predict
key COVID-19 outcomes from electronic health record (EHR)
data [17]. The aim of this study was not to compare the
performance of various classifiers in a federated learning
environment, but to assess if a federated learning strategy could
outperform locally trained models that use 2 common modeling
techniques in the context of COVID-19. We are the first to build
federated learning models that use EHR data to predict mortality
in patients diagnosed with COVID-19 within 7 days of hospital
admission.

Methods

Clinical Data Source and Study Population
Data from patients who tested positive for COVID-19 (N=4029)
were derived from the EHRs of 5 Mount Sinai Health System
(MSHS) hospitals in New York City. Study inclusion criteria
are shown in Figure 1. Further details, as well as cross-hospital
demographic and clinical comparisons, are in Multimedia
Appendices 1-8.
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Figure 1. Study design and model workflow. (A) Criteria for patient inclusion in this study. (B) An overview of the local and pooled models. Local
models only used data from the site itself, whereas pooled models incorporated data from all sites. Both the local and pooled MLP and LASSO models
were used. (C) An overview of the federated model. Parameters from a central aggregator are shared with each site, and sites do not have direct access
to clinical data from other sites. After the models are locally trained at a site, parameters with and without added noise are sent back to the central
aggregator to update federated model parameters. Federated LASSO and MLP models were used. LASSO: least absolute shrinkage and selection
operator; MLP: multilayer perceptron; MSB: Mount Sinai Brooklyn; MSH: Mount Sinai Hospital; MSM: Mount Sinai Morningside; MSQ: Mount Sinai
Queens; MSW: Mount Sinai West.

Study Design
We performed multiple experiments, as outlined in Figure 1.
First, we developed classifiers that used, and were tested on,
local data from each hospital separately. Second, we built a
federated learning model by averaging the model parameters
of each individual hospital. Third, we combined all individual
hospital data into a superset to develop a pooled model that
represented an ideal framework.

Study data included the demographics, past medical history,
vital signs, lab test results, and outcomes of all patients (Table

1, Table S1 in Multimedia Appendix 2). Due to the varying
prevalence of COVID-19 across hospitals, we assessed multiple
class balancing techniques (Table S2 in Multimedia Appendix
3). To simulate federated learning in practice, we also performed
experiments with the addition of Gaussian noise (Multimedia
Appendix 7). To promote replicability, we used the TRIPOD
(Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis) guidelines (Table S3 in
Multimedia Appendix 4) and released our code under a general
public license (Multimedia Appendices 1-8).
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Table 1. Demographic characteristics of all hospitalized patients with COVID-19 included in this study (N=4029)a.

P valueMount Sinai
West

Mount Sinai
Queens

Mount Sinai MorningsideMount Sinai HospitalMount Sinai
Brooklyn

Characteristic

 —b4855407491644611Number of patients,
n

Gender, n (%)

.004257 (53.0)344 (63.7)411 (54.9)951 (57.8)338 (55.3)Male

.004228 (47.0)196 (36.3)338 (45.1)693 (42.2)273 (44.7)Female

<.00166.3 (52.5-77.6)68.1 (57.1-
78.8)

69.8 (57.4-80.3)63.3 (51.3-73.2)72.5 (63.6-82.7)Age (years), median
(IQR)

Ethnicity, n (%)

<.001111 (22.9)198 (36.7)259 (34.6)460 (28.0)21 (3.4)Hispanic

<.001349 (72.0)287 (53.1)452 (60.3)892 (54.3)416 (68.1)Non-Hispanic

<.00125 (5.2)55 (10.2)38 (5.1)292 (17.8)174 (28.5)Unknown

Race, n (%) 

<.00127 (5.6)56 (10.4)16 (2.1)83 (5.0)13 (2.1)Asian

<.001109 (22.5)64 (11.9)266 (35.5)388 (23.6)323 (52.9)Black/African
American

<.001164 (33.8)288 (53.3)343 (45.8)705 (42.9)54 (8.8)Other

<.00114 (2.9)14 (2.6)25 (3.3)87 (5.3)27 (4.4)Unknown

<.001171 (35.3)118 (21.9)99 (13.2)381 (23.2)194 (31.8)White

Past medical history, n (%)

.0067 (1.4)15 (2.8)—16 (1.0)14 (2.3)Acute myocar-
dial infarction

<.001———28 (1.7)—Acute respirato-
ry distress syn-
drome

.74———11 (0.7)—Acute venous
thromboem-
bolism

<.00127 (5.6)19 (3.5)39 (5.2)100 (6.1)—Asthma

.00528 (5.8)49 (9.1)44 (5.9)113 (6.9)23 (3.8)Atrial fibrilla-
tion

<.00141 (8.5)21 (3.9)47 (6.3)190 (11.6)22 (3.6)Cancer

<.00133 (6.8)81 (15.0)75 (10.0)208 (12.7)46 (7.5)Chronic kidney
disease

.0419 (3.9)28 (5.2)31 (4.1)64 (3.9)11 (1.8)Chronic obstruc-
tive pulmonary
disease

.02——14 (1.9)17 (1.0)—Chronic viral
hepatitis

.00851 (10.5)82 (15.2)92 (12.3)168 (10.2)56 (9.2)Coronary artery
disease

<.00176 (15.7)154 (28.5)165 (22.0)351 (21.4)93 (15.2)Diabetes melli-
tus

.3830 (6.2)43 (8.0)61 (8.1)110 (6.7)36 (5.9)Heart failure

.00114 (2.9)—11 (1.5)32 (1.9)—Human immun-
odeficiency
virus

<.001139 (28.7)225 (41.7)249 (33.2)549 (33.4)112 (18.3)Hypertension
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P valueMount Sinai
West

Mount Sinai
Queens

Mount Sinai MorningsideMount Sinai HospitalMount Sinai
Brooklyn

Characteristic

.24—————Intracerebral
hemorrhage

<.001—15 (2.8)15 (2.0)53 (3.2)—Liver disease

<.00129 (6.0)38 (7.0)74 (9.9)176 (10.7)—Obesity

<.001——15 (2.0)54 (3.3)—Obstructive
sleep apnea

.054———24 (1.5)—Stroke

<.00127 (5.6)124 (23.0)93 (12.4)118 (7.2)148 (24.2)Mortality within 7
days, n (%)

aInterhospital comparisons for categorical data were assessed with Chi-square tests. Numerical data were assessed with Kruskal-Wallis tests, and
Bonferroni-adjusted P values were reported. Values relating to <10 patients per field were not provided to protect patient privacy (--).
bNot available.

Model Development and Selection
The primary outcome was mortality within 7 days of admission.
We generated 2 baseline conventional predictive models—a
multilayer perceptron (MLP) model and a logistic regression
with L1-regularization or least absolute shrinkage and selection
operator (LASSO) model. To maintain consistency and enable
direct comparisons, each MLP model was built with the same
architecture. We provide more information on model
architecture and tuning in Multimedia Appendix 5. MLP and
LASSO models were fit on all 5 hospitals.

Our primary model of interest was a federated learning model.
Training was performed at different sites, and parameters were
sent to a central location (Figure 1). A central aggregator was
used to initialize the federated model with random parameters.
This model was sent to each site and trained for 1 epoch.
Afterward, model parameters were sent back to the central
aggregator, which is where federated averaging was performed.
Updated parameters from the central aggregator were then sent
back to each site. This cycle was repeated for multiple epochs.
Federated averaging scales the parameters of each site according
to the number of available data points and sums all parameters
by layer. Through this technique, federated models did not
receive any raw data.

Experimental Evaluation
All models were trained and evaluated by using 490-fold
bootstrapping. Each experiment had a 70%-30% training-testing
data split and was initialized with a unique random seed. We

used the models’ probability scores to calculate average areas
under the receiver operating characteristic curve (AUROCs)
across 490 iterations.

Results

Intercohort Comparisons
EHR data consisted of patient demographics, past medical
history, vitals, and lab test results (Table 1, Table S1 in
Multimedia Appendix 2). After performing Bonferroni
correction, we found significant differences in the proportions
of outcomes across hospitals, specifically mortality within 7
days (Table 1). There were also significant differences in gender,
age, ethnicity, race, and the majority of key clinical features
(Table S1 in Multimedia Appendix 2).

Classifier Training and Performance
LASSO and MLP models were trained on data from each of
the 5 MSHS hospitals separately (ie, local models), data from
a combined dataset (ie, pooled models), and data from a
federated learning framework (ie, federated models). All 3
training strategies for both models were evaluated for all sites
(Figure 1). Training curves and AUROC curves versus the epoch
number demonstrate that federated models improve performance
after increased passes of training data (Figure 2). The results
for model optimization (Figure S2 in Multimedia Appendix 8)
and class balancing experiments (Table S2 in Multimedia
Appendix 3) can be found in Multimedia Appendices 1-8. The
final model hyperparameters are listed in Table S4 in
Multimedia Appendix 5.
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Figure 2. Federated model training. The performance of (A) federated MLP and (B) federated LASSO models, as measured by AUROCs versus the
number of training epochs. The binary cross-entropy loss of (C) federated MLP and (D) federated LASSO models versus the number of training epochs.
AUROC: area under the receiver operating characteristic curve; LASSO: least absolute shrinkage and selection operator; MLP: multilayer perceptron;
MSB: Mount Sinai Brooklyn; MSH: Mount Sinai Hospital; MSM: Mount Sinai Morningside; MSQ: Mount Sinai Queens; MSW: Mount Sinai West.

Learning Framework Comparisons
The performance of all LASSO and MLP models (ie, local,
pooled, and federated models) was assessed at each site (Table
2, Figure 3). The LASSOfederated model outperformed the
LASSOlocal model at all hospitals except the Mount Sinai
Brooklyn and Mount Sinai Queens hospitals; the LASSOfederated

model achieved AUROCs that ranged from 0.694 (95% CI
0.690-0.698) to 0.801 (95% CI 0.796-0.807). The LASSOpooled

model outperformed the LASSOfederated model at all hospitals;
the LASSOpooled model achieved AUROCs that ranged from
0.734 (95% CI 0.730-0.737) to 0.829 (95% CI 0.824-0.834).

The MLPfederated model outperformed the MLPlocal model at all
hospitals; the MLPfederated model achieved AUCROCs that varied
from 0.786 (95% CI 0.782-0.789) to 0.836 (95% CI
0.830-0.841), while the MLPlocal model achieved AUROCs that
ranged from 0.719 (95% CI 0.711-0.727) to 0.822 (95% CI
0.820-0.825). The MLPfederated model outperformed the
MLPpooled model at the Mount Sinai Morningside and Mount
Sinai Queens hospitals; the MLPpooled model achieved AUROCs
that ranged from 0.751 (95% CI 0.747-0.755) to 0.842 (95%
CI 0.837-0.847).
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Table 2. Performance of the local, pooled, and federated LASSOa and MLPb models at each site, based on AUROCsc with 95% confidence intervals.

Mount Sinai West
(n=485), AUROC
(95% CI)

Mount Sinai
Queens
(n=540), AU-
ROC (95% CI)

Mount Sinai Morningside
(n=749), AUROC (95% CI)

Mount Sinai Hospital
(n=1644), AUROC (95% CI)

Mount Sinai
Brooklyn (n=611),
AUROC (95% CI)

Model 

 

LASSO model

0.482 (0.473-
0.491)

0.706 (0.702-
0.710)

0.66 (0.656-0.664)0.693 (0.689-0.696)0.791 (0.788-
0.795)

Local

0.829 (0.824-
0.834)

0.734 (0.730-
0.737)

0.789 (0.785-0.792)0.791 (0.788-0.794)0.816 (0.814-
0.819)

Pooled

0.801 (0.796-
0.807)

0.694 (0.690-
0.698)

0.767 (0.764-0.771)0.772 (0.769-0.774)0.793 (0.790-
0.796)

Federated

MLP model

0.719 (0.711-
0.727)

0.791 (0.788 -
0.795)

0.747 (0.743-0.751)0.750 (0.747-0.754)0.822 (0.820-
0.825)

Local

0.842 (0.837-
0.847)

0.783 (0.779-
0.786)

0.751 (0.747-0.755)0.792 (0.789-0.795)0.823 (0.820-
0.826)

Pooled

0.836 (0.83-0.841)0.809 (0.806-
0.812)

0.791 (0.788-0.795)0.786 (0.782-0.789)0.829 (0.826-
0.832)

Federated (no
noise

aLASSO: least absolute shrinkage and selection operator.
bMLP: multilayer perceptron.
cAUROC: area under the receiver operating characteristic curve.

Figure 3. Model performance by site. The performance of all models (ie, local LASSO, pooled LASSO, federated LASSO, local MLP, pooled MLP,
and federated [no noise] MLP models) based on areas under the ROC curve at (A) MSB (n=611), (B) MSW (n=485), (C) MSM (n=749), (D) MSH
(n=1644), and (E) MSQ (n=540). Average areas under the ROC curve with 95% confidence intervals (ie, after the 70%-30% training-testing data split
over 490 experiments) are shown. (F) The average performance of each model across all 5 sites. LASSO: least absolute shrinkage and selection operator;
MLP: multilayer perceptron; MSB: Mount Sinai Brooklyn; MSH: Mount Sinai Hospital; MSM: Mount Sinai Morningside; MSQ: Mount Sinai Queens;
MSW: Mount Sinai West; ROC: receiver operating characteristic.

Discussion

This is the first study to evaluate the efficacy of applying
federated learning to the prediction mortality in patients with

COVID-19. EHR data from 5 hospitals were used to represent
demonstrative use cases. By using disparate patient
characteristics from each hospital after performing
multiple-hypothesis correction in terms of demographics,
outcomes, sample size, and lab values, this study was able to
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reflect a real-world scenario, in which federated learning could
be used for diverse patient populations.

The primary findings of this study show that the MLPfederated

and LASSOfederated models outperformed their respective local
models at most hospitals. Differences in MLP model
performance may have been attributed to the experimental
condition, wherein the same underlying architecture was used
for all MLP models. Although this framework allowed for
consistency in learning strategy comparisons, it may have led
to the improper tuning of pooled models. Collectively, our
results show the potential of federated learning in overcoming
the drawbacks of fragmented, case-specific local models.

Our study shows scenarios in which federated models should
either be approached with caution or favored. The Mount Sinai
Queens hospital was the only hospital where the LASSOfederated

model performed worse than the LASSOlocal model, with a
difference of 0.012 in AUROC values. This may have been
attributed to the hospital having a smaller sample size (n=540)
and higher mortality prevalence (23%) than the other sites.
However, at the Mount Sinai West hospital, the LASSOlocal

model severely underperformed compared to the LASSOfederated

model, with an AUROC difference of 0.319. The Mount Sinai

West hospital had the lowest sample size (n=485) and the lowest
COVID-19 mortality prevalence (5.6%) compared to all
hospitals. This finding emphasizes the benefit of using federated
learning for sites with small sample sizes and large class
imbalances.

We noted a few limitations in our study. First, data collection
was limited to MSHS hospitals. This may limit model
generalizability to hospitals in other regions. Second, this study
focused on applying federated learning to the prediction of
outcomes based on patient EHR data as proof of principle, rather
than creating an operational framework for immediate
deployment. As such, there are various aspects of the federated
learning process that this study does not address, such as load
balancing, convergence, and scaling. Third, our models only
included clinical data. The models can be enhanced by
incorporating other modalities. Fourth, we only implemented
2 widely used classifiers within this framework, but other
algorithms may perform better. Finally, although identical MLP
architectures were used across all learning strategies for direct
comparisons, these architectures could have been further
optimized. Future studies should focus on model accessibility
and the expansion analysis of federated models to improve
scalability, understand feature importance, and integrate
additional data modalities.
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Table S1. Clinical characteristics of hospitalized patients with COVID-19 at baseline. The clinical characteristics of all patients
(N=4029) included in this study, including vital signs, metabolic markers, liver function, inflammatory markers, and hematological
markers. All laboratory data was obtained within 36 hours of admission. Interhospital comparisons for categorical data were
assessed with Chi-square tests. Numerical data were assessed Kruskal-Wallis tests. Bonferroni-adjusted P values are reported.
Values relating to <10 patients per field are not provided to protect patient privacy.
[PDF File (Adobe PDF File), 436 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Table S2. Effects of class balancing techniques on local MLP models based on AUROCs and AUPRCs. Local MLP model
performance, as measured by the AUROCs and AUPRCs of the 3 class balancing techniques (ie, static class weights, proportional
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class weights, and 1:1 undersampling) and unbalanced data for all 5 sites after training for 80 epochs. The outcome of interest,
mortality percentage within seven days, is provided for each site. AUPRC: area under the precision-recall curve; AUROC: area
under the receiver operating characteristic curve; MLP: multilayer perceptron.
[PDF File (Adobe PDF File), 173 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Table S3. Study data as reported using Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) guidelines.
[PDF File (Adobe PDF File), 206 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Table S4. Final model hyperparameters. The LASSO and MLP model hyperparameters used at all sites for all variations (ie,
local, pooled, and federated models), after optimization. LASSO: least absolute shrinkage and selection operator; MLP: multilayer
perceptron.
[PDF File (Adobe PDF File), 170 KB-Multimedia Appendix 5]

Multimedia Appendix 6
Table S5. Model performance metrics across sites. The performance of all LASSO and MLP models (ie, local, pooled, and
federated models), as measured by AUROCs, AUPRCs, accuracy, sensitivity, specificity, and F1 score, with 95% confidence
intervals. AUPRC: area under the precision recall curve; AUROC: area under the receiver operating characteristic curve; LASSO:
least absolute shrinkage and selection operator; MLP: multilayer perceptron.
[PDF File (Adobe PDF File), 180 KB-Multimedia Appendix 6]

Multimedia Appendix 7
Effect of noise on federated MLP model performance by site. The performance of federated MLP models without noise and
federated MLP models with Gaussian noise, as determined by AUROCs, was assessed at (A) MSB (n=611) (B) MSW (n=485),
(C) MSM (n=749), (D) MSH (n=1644), and (E) MSQ (n=540) after 70-30 train-test split over 490 experiments. (F) The average
performance of both federated MLP models across all 5 sites. AUROC: area under the receiver operating characteristic curve;
MLP: multilayer perceptron; MSB: Mount Sinai Brooklyn; MSH: Mount Sinai Hospital; MSM: Mount Sinai Morningside; MSQ:
Mount Sinai Queens; MSW: Mount Sinai West.
[PNG File , 168 KB-Multimedia Appendix 7]

Multimedia Appendix 8
Effect of noise on federated MLP model training. The performance of federated MLP models without noise and federated MLP
models with Gaussian noise was evaluated by using (A) AUROCs and (B) binary cross-entropy loss versus the number of training
epochs. The performance of federated MLP models with Gaussian noise was assessed with (C) AUROCs and (D) binary
cross-entropy loss at all 5 sites. The averages after the 70%-30% training-testing data split over 490 experiments were used for
all plots. AUROC: area under the receiving-operating characteristic curve; MLP: multilayer perceptron; MSB: Mount Sinai
Brooklyn; MSH: Mount Sinai Hospital; MSM: Mount Sinai Morningside; MSQ: Mount Sinai Queens; MSW: Mount Sinai West.
[PNG File , 297 KB-Multimedia Appendix 8]
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