Published on in Vol 8 , No 11 (2020) :November

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/23930, first published .
Machine Learning Electronic Health Record Identification of Patients with Rheumatoid Arthritis: Algorithm Pipeline Development and Validation Study

Machine Learning Electronic Health Record Identification of Patients with Rheumatoid Arthritis: Algorithm Pipeline Development and Validation Study

Machine Learning Electronic Health Record Identification of Patients with Rheumatoid Arthritis: Algorithm Pipeline Development and Validation Study

Journals

  1. Maarseveen T, Maurits M, Niemantsverdriet E, van der Helm-van Mil A, Huizinga T, Knevel R. Handwork vs machine: a comparison of rheumatoid arthritis patient populations as identified from EHR free-text by diagnosis extraction through machine-learning or traditional criteria-based chart review. Arthritis Research & Therapy 2021;23(1) View
  2. Obayya M, Alamgeer M, S. Alzahrani J, Alabdan R, N. Al-Wesabi F, Mohamed A, Alsaid Hassan M. Artificial Intelligence Driven Biomedical Image Classification for Robust Rheumatoid Arthritis Classification. Biomedicines 2022;10(11):2714 View
  3. Humbert‐Droz M, Izadi Z, Schmajuk G, Gianfrancesco M, Baker M, Yazdany J, Tamang S. Development of a Natural Language Processing System for Extracting Rheumatoid Arthritis Outcomes From Clinical Notes Using the National Rheumatology Informatics System for Effectiveness Registry. Arthritis Care & Research 2023;75(3):608 View
  4. Fajardo E, Graf C. Artificial Intelligence, the transformation of rheumatology? Part II. Global Rheumatology 2022 View
  5. Kedra J, Davergne T, Braithwaite B, Servy H, Gossec L. Machine learning approaches to improve disease management of patients with rheumatoid arthritis: review and future directions. Expert Review of Clinical Immunology 2021;17(12):1311 View
  6. Knevel R, Liao K. From real-world electronic health record data to real-world results using artificial intelligence. Annals of the Rheumatic Diseases 2023;82(3):306 View
  7. Felten R, Rosine N. Responding to and Driving Change in Rheumatology: Report from the 12th International Immunology Summit 2021. Rheumatology and Therapy 2022;9(2):705 View
  8. Fajardo E, Graf C. Inteligência artificial, transformação da reumatologia? Parte II. Global Rheumatology 2022 View
  9. Knevel R, Hügle T. E-health as a sine qua non for modern healthcare. RMD Open 2022;8(2):e002401 View
  10. Lazarova E, Mora S, Maggi N, Ruggiero C, Vitale A, Rubartelli P, Giacomini M. An Interoperable Electronic Health Record System for Clinical Cardiology. Informatics 2022;9(2):47 View
  11. Fajardo E, Graf C. Inteligencia artificial, ¿transformación de la reumatología? - II Parte. Global Rheumatology 2022 View
  12. Momtazmanesh S, Nowroozi A, Rezaei N. Artificial Intelligence in Rheumatoid Arthritis: Current Status and Future Perspectives: A State-of-the-Art Review. Rheumatology and Therapy 2022;9(5):1249 View
  13. Redd D, Shao Y, Zeng-Treitler Q, Myers L, Barker B, Nelson S, Imperiale T. Identification of colorectal cancer using structured and free text clinical data. Health Informatics Journal 2022;28(4):146045822211344 View
  14. Nurmambetova E, Pan J, Zhang Z, Wu G, Lee S, Southern D, Martin E, Ho C, Xu Y, Eastwood C. Developing an Inpatient Electronic Medical Record Phenotype for Hospital-Acquired Pressure Injuries: Case Study Using Natural Language Processing Models. JMIR AI 2023;2:e41264 View
  15. Chung C, Chou S, Hsiao T, Zhang G, Chen Y. A Novel Hybrid Machine Learning Approach for the Prediction of Lupus Nephritis Using Polygenic Risk Score and Electronic Health Record. SSRN Electronic Journal 2022 View