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Abstract

Background: Financial codes are often used to extract diagnoses from electronic health records. This approach is prone to false
positives. Alternatively, queries are constructed, but these are highly center and language specific. A tantalizing alternative is the
automatic identification of patients by employing machine learning on format-free text entries.

Objective: The aim of this study was to develop an easily implementable workflow that builds a machine learning algorithm
capable of accurately identifying patients with rheumatoid arthritis from format-free text fields in electronic health records.

Methods: Two electronic health record data sets were employed: Leiden (n=3000) and Erlangen (n=4771). Using a portion of
the Leiden data (n=2000), we compared 6 different machine learning methods and a naïve word-matching algorithm using 10-fold
cross-validation. Performances were compared using the area under the receiver operating characteristic curve (AUROC) and
the area under the precision recall curve (AUPRC), and F1 score was used as the primary criterion for selecting the best method
to build a classifying algorithm. We selected the optimal threshold of positive predictive value for case identification based on
the output of the best method in the training data. This validation workflow was subsequently applied to a portion of the Erlangen
data (n=4293). For testing, the best performing methods were applied to remaining data (Leiden n=1000; Erlangen n=478) for
an unbiased evaluation.

Results: For the Leiden data set, the word-matching algorithm demonstrated mixed performance (AUROC 0.90; AUPRC 0.33;
F1 score 0.55), and 4 methods significantly outperformed word-matching, with support vector machines performing best (AUROC
0.98; AUPRC 0.88; F1 score 0.83). Applying this support vector machine classifier to the test data resulted in a similarly high
performance (F1 score 0.81; positive predictive value [PPV] 0.94), and with this method, we could identify 2873 patients with
rheumatoid arthritis in less than 7 seconds out of the complete collection of 23,300 patients in the Leiden electronic health record
system. For the Erlangen data set, gradient boosting performed best (AUROC 0.94; AUPRC 0.85; F1 score 0.82) in the training
set, and applied to the test data, resulted once again in good results (F1 score 0.67; PPV 0.97).

Conclusions: We demonstrate that machine learning methods can extract the records of patients with rheumatoid arthritis from
electronic health record data with high precision, allowing research on very large populations for limited costs. Our approach is
language and center independent and could be applied to any type of diagnosis. We have developed our pipeline into a universally
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applicable and easy-to-implement workflow to equip centers with their own high-performing algorithm. This allows the creation
of observational studies of unprecedented size covering different countries for low cost from already available data in electronic
health record systems.

(JMIR Med Inform 2020;8(11):e23930) doi: 10.2196/23930

KEYWORDS

Supervised machine learning; Electronic Health Records; Natural Language Processing; Support Vector Machine; Gradient
Boosting; Rheumatoid Arthritis

Introduction

Electronic health records (EHR) offer an interesting collection
of clinical information for observational research, yet a crucial
step is an accurate identification of disease cases. This is
commonly done by manual chart review or by using
standardized billing codes. However, these methods are either
labor-intensive or prone to including false positives. Previous
studies [1] found that using only standardized billing codes, for
example, ≥3 International Classification of Diseases, Ninth
Revision (ICD-9) rheumatoid arthritis codes, results in a positive
predictive value (PPV) of 56% (95% CI 47%-64%). Using a
combination of billing code with a disease-modifying
antirheumatic drug code (≥1 ICD-9 rheumatoid arthritis code
plus ≥1 disease-modifying antirheumatic drug) results in a PPV
of 45% (95% CI 37%-53%). Clinical diagnoses can also be
inferred by performing naïve word-matching on format-free
text fields. This approach does not take into account the provided
context and is thus prone to false positives as well.

Alternatively, query-like algorithms can be used. However,
these algorithms require knowledge on the diagnosis of interest,
biasing the inclusion of potential study cases. For example,
when we want to identify patients with rheumatoid arthritis, we
can select people with cyclic citrullinated peptide antibodies
that were treated with methotrexate. Those identified likely
concern true cases of rheumatoid arthritis but are biased as
patients with rheumatoid arthritis do not always receive
methotrexate and do not all have cyclic citrullinated
peptide–positive tests. On the other hand, selecting only
methotrexate would create many false positives as methotrexate
is prescribed for many other rheumatic diseases. An additional
disadvantage is that rule-based algorithms tend to be
center-specific and perform less well in other clinics [2].

Advancements in natural language processing and machine
learning have created great potential for processing format-free
text data such as those in EHRs [2,3]. A major advantage of
machine learning is that it can learn extraction patterns from a
set of training examples, relieving the need for extensive domain

knowledge. We set out to explore the utility of machine learning
methods to identify patients with rheumatoid arthritis from
format-free text fields in EHRs. As machine learning methods
learn from presented training examples, they can suffer from
intercenter variability due to different notation characteristics
in EHRs [2].

Therefore, the aim of this study was to develop a broadly
applicable workflow that employs machine learning methods
to identify patients with rheumatoid arthritis from format-free
text fields of EHRs. Additionally, the workflow should be easy
to implement and require only the annotation of a subset of the
total data set.

Methods

Patients’ Data Collection

Overview
For this study, we employed 2 data sets: Leiden (the
Netherlands) and Erlangen (Germany). See Multimedia
Appendix 1 (Table S1) for a convenient overview of the study
outline for both centers.

Leiden Data Set
We retrieved EHR data from patients (n=23,300) who visited
the rheumatology outpatient clinic of the Leiden University
Medical Centre since 2011 (Figure 1). We used the Conclusion
section of the patient records, which consisted of format-free
text fields describing the symptoms and (differential) diagnoses
of the patient. From these dossiers, 11,786 patients had a first
visit after the initiation of the digital system in 2011 [4]. We
randomly selected 3000 patients from these newly referred
patients and extracted all of their entries for up to 1 year of
follow-up. A clinician manually reviewed all entries and
annotated the final diagnosis based on all entries. The data were
divided into 2 independent sets with a 66/33 split: Leiden-A
(n=2000) for model selection, training, and validation and
Leiden-B (n=1000) for independent testing. The study was
approved by the local ethics board.
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Figure 1. Study outline of the Leiden cohort. EHR: electronic health record; NLP: natural language processing.

Erlangen Data Set
After model selection, training, and validation analyses were
performed on the Leiden data, we evaluated the universal
applicability of our pipeline by applying it to the EHR data from
a second center. We retrieved admission notes from the EHR
database of University Hospital Erlangen (Department of
Internal Medicine 3 Rheumatology and Immunology,
Universitätsklinikum). The course & assessment component
was used because it featured the patient status descriptions.
These data consisted of 4771 patients in total featuring all their
entries up to 1 year of follow-up. A health care professional
manually reviewed all entries and annotated the final diagnosis
based on all entries. The Erlangen data set was divided into 2
independent sets with a 90/10 split: Erlangen-A (n=4293) for
model and Erlangen-B (n=478) for testing. The study was
approved by the local ethics board.

Training, Model Selection, and Validation (Leiden-A
and Erlangen-A)

Preprocessing Format-Free Text
We employed spell check and several natural language
processing techniques to preprocess the extracted text with
scikit-learn tools provided by Pedregosa et al [5]. The pipeline
can be divided into 5 steps: word segmentation, lowercase
conversion, stop word removal, word normalization, and
vectorization. First, we segmented the text into words, splitting
by spaces and special characters. Next, we converted the text
to lowercase and removed the irrelevant but highly prevalent
stop words. Morphological variation was further reduced by
applying lemmatization to normalize words to their base form.
The tools provide lemmatization tools for many languages; we
used the Dutch and German language tools. Segmented words
were then aggregated by grouping neighboring words into sets

of 3 (ie, n-grams such as patient, verdenking artritis). Finally,
a term frequency by inverse document frequency transformation,
which builds a clinical vocabulary and weighs words according
to their occurrence, was applied to vectorize the text data.

Training and Machine Learning Model Selection
We tested the following machine learning methods: naïve Bayes
[6], neural networks [7], random forest [8], support vector
machine [9], gradient boosting [10], decision tree [8], and a
random classifier, which assigns class labels at random with
frequencies equal to those observed in the training set
(parameters are shown in Table S2, Multimedia Appendix 1).
Default scikit-learn implementations were used to create the
machine learning models [11].

Furthermore, we employed a naïve word-matching algorithm
that assigns rheumatoid arthritis status to a sample when the
text contained rheumatoid arthritis (in German or Dutch) or its
abbreviation appeared in the chart. Each classifier gives a score
between 0 and 1 that we interpreted as a probability for each
sample to be a case.

We randomly split the Leiden-A and Erlangen-A in train and
validation sets using a 10-fold cross-validation procedure for
model selection [12]. In short, for each sample set, different
models were trained and evaluated in equally sized training and
validation sets. Classification performances in the validation
sets were then averaged over the samples to give robust
estimates of each individually evaluated method to annotate
unseen EHR records with a rheumatoid arthritis status.

Performance Validation
As each classifier generates a probability score of a rheumatoid
arthritis, the performance of a classifier can be tested by
applying different cut-offs for case identification. With these
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probabilities, we first generated receiver operating characteristic
curves, plotting the true positive rate against the false positive
rate for all probability scores. Second, we created
precision-recall curves, plotting the precision (PPV) against the
recall (sensitivity or true positive rate) for all score thresholds.
Classification performance was then measured using the area
under the receiver operating characteristic curve (AUROC) and
the area under the precision curve (AUPRC) [11]. For data sets
with low case prevalence (imbalanced data), AUROC can be
inaccurate and using AUPRC is preferred [13].

To determine whether the performance of the method
significantly differed from that of the word-matching method,
we implemented the 5×2 cross-validation procedure described
by Dietterich [14]. The 5×2 cross-validation procedure splits
the data into 2 equal sized sets each repetition. The differences
between the classifiers are then estimated with a two-tailed
paired t test with a significance level of 0.05. This approach
takes into account the problem of dependence between the
measurements.

The F1 score served as the primary criterion for picking the
final method. The F1 score reflects the trade-off between
precision and recall as it is the harmonic mean of the two [15].
The best performing model was compared to the other classifiers
with two-tailed paired t tests (α=.05) in the 5×2 cross-validation,
to evaluate whether the best performing model significantly
outperformed the other candidates.

Sensitivity Analyses
We ran 2 sensitivity analyses on the Leiden data. To evaluate
the influence of sample size on the performance of a classifier,
we employed the classifier on the Leiden-A data set with
decreasing sample sizes within the same 10-fold cross-validation
setup. To test the effect of disease prevalence on the classifier’s
performance, we created subsets of the Leiden-A set with
different fractions of patients with rheumatoid arthritis, applied
the classifier to this data and compared the AUPRC between
the subsets.

Final Method Testing of Case Identification (Leiden-B
and Erlangen-B)
In the final test phase (using the B data sets), we obtained
reliable estimates of the selected model’s performance. We
applied the trained model for the best performing method from
the A data sets directly to the B data sets (Leiden-B, n=1000;
Erlangen-B, n=478). To make a final call on rheumatoid arthritis
status, one must define a threshold for the probability. The final
test characteristics of the model are affected by the chosen
probability cut-off. We report the PPV, sensitivity, and F1 score

for each B data set at 2 operator points learned from the A data
sets: (1) optimized PPV, thus favoring high-certainty cases and
(2) optimized sensitivity, thus favoring the inclusive selection
of cases.

Implementation and Availability
Machine learning methods, model training, and evaluations
were performed with the scikit-learn package (version 0.21.2)
in Python (version 3.5) [11]. At all times, default
implementations and default settings were used. All scripts
including instructions on how to apply the methods are posted
online [16].

Results

Data
Leiden-A (n=2000) and Leiden-B (n=1000) annotated data sets
had nearly equal percentages of patients with rheumatoid
arthritis (Leiden-A: 154/2000, 7.7%; Leiden-B: 84/1000, 8.4%).
Erlangen-A (n=4293) and Erlangen-B (n=478) annotated data
sets also had nearly equal percentages of patients with
rheumatoid arthritis (Erlangen-A: 1071/4293, 24.9%;
Erlangen-B: 112/478, 23.4%).

Leiden

Preprocessing
We found a total of 114,529 words and 8355 unique words in
the Leiden-A data after segmentation. With lemmatization and
lowercase conversion, the number of unique words was 8141.
After removing the most common words with a stop word filter,
only 88,524 words and 8078 unique words remained. There
were 133,161 unique word combinations (n-grams) in the text.
The term frequency by inverse document frequency
transformation resulted in a sparse matrix of 2000×133,161.

Performance Evaluation of Machine Learning Methods
Naïve word-matching had overall a good performance (AUROC:
mean 0.90, SD 0.02), which was significantly better (P<.001)
than that of a random classifier (AUROC: mean 0.50, SD 0.01).
Although naïve word-matching showed good overall test
performance, it had a low AUPRC value (mean 0.36 SD 0.07),
indicating that the naïve word-matching would generate many
false positives. Four machine learning methods outperformed
naïve word-matching (AUROC: naïve Bayes mean 0.71, SD
0.03, P=.003; neural network: mean 0.98, SD 0, P=.005; random
forest: mean 0.95, SD 0.01, P=.007; support vector machine:
0.98, SD 0.01, P=.004; gradient boosting: mean 0.98, SD 0.01,
P=.003; decision tree: mean 0.86, SD 0.05, P=.06) (Figure 2).
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Figure 2. (A) Receiver operating characteristics and (B) precision-recall curves for all machine learning methods (solid lines) and the naïve word-matching
method (dotted line) in the training set (Leiden-A).

The support vector machine had the highest performance in
comparison to that of word-matching (AUPRC: mean 0.90, SD
0.02; F1 score: mean 0.83 SD 0.02, P<.001). However, the 5×2
cross-validation paired t tests revealed that the differences for
gradient boosting (P=.61), neural network (P=.18), and random
forest (P=.10) were not significant (Multimedia Appendix 2).

Sensitivity Analyses
We did not observe any significant loss of precision when
lowering the number of training samples from 1000 (original)
to 600 patients (Multimedia Appendix 3). Neither the AUROC
nor the AUPRC showed a significant difference (P=.17 and
P=.11, respectively). Only when reducing the training set to
450 entries did we observe a significant discrepancy (P=.005
and P=.005, respectively).

The classifier’s performance maintained an AUPRC >0.80 in
settings with highly different disease prevalence (Multimedia
Appendix 4). Only when disease prevalence was below 4% or

above 50% did we detect a difference in performance compared
to that of the initial 8% prevalence.

Cut-Off Selection
We picked the support vector machine classifier with the median
performance in the training stage. This classifier assigns a
probability of being a rheumatoid arthritis to each patient by
summing the coefficients of the features present in the clinical
notes of the patient (Figure 3). The probability cut-offs for
optimized PPV (>0.95) and optimized sensitivity (>0.95) were
0.99 and 0.53, respectively (Figure 4).

The probability cut-off for optimized PPV resulted in the
following test characteristics: PPV 0.96, sensitivity 0.70,
specificity 1.00, negative predictive value [NPV] 1.00, and F1
score 0.81. The probability cut-off for optimized sensitivity
resulted in the following test characteristics: PPV 0.72,
sensitivity 0.96, specificity 0.97, NPV 1.00, and F1 score 0.82.
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Figure 3. The relative importance (coefficients) of the top 20 features in the Leiden-A data set according to the final support vector machine model.
The initial data was in Dutch, we translated the words to English in this figure to improve readability.
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Figure 4. Swarm plot depicting the support vector machine–derived probability of being either non-rheumatoid arthritis (blue) or rheumatoid arthritis
(green) for the Leiden-A data set. The dotted lines display the optimal cutoffs. Sens: sensitivity, Spec: specificity; PPV: positive predictive value; NPV:
negative predictive value; Acc: accuracy; F1: F1 score.

Final Method Testing of Case Identification
In the Leiden-B data set, rheumatoid arthritis support vector
machine classifier (Table 1) identified 64 cases with a cut-off
of 0.99 (with corresponding PPV 0.94, sensitivity 0.71,
specificity 1.00, NPV 0.97, and F1 score 0.81) and 104 cases

with a cut-off of 0.53 (with corresponding PPV 0.75, sensitivity
0.93, specificity 0.97, NPV 0.99, and F1 score 0.83). In the
complete Leiden data set of 23,300 patients using the first
(precise) cut-off resulted in 2873 cases of rheumatoid arthritis
and the second (inclusive) cut-off resulted in 6453 cases of
rheumatoid arthritis.
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Table 1. Support vector machine confusion matrices for the Leiden-B test set (n=1000) .

Support vector machine 2 (cut-off=0.53)Support vector machine 1 (cut-off=0.99)Clinician-based

Rheumatoid arthritisNon–rheumatoid arthritisRheumatoid arthritisNon–rheumatoid arthritis

26 (false positive)890 (true negative)4 (false positive)912 (true negative)Non–rheumatoid arthritis

78 (true positive)6 (false negative)60 (true positive)24 (false negative)Rheumatoid arthritis

Validation of Workflow in Erlangen Data

Training and Model Selection
To evaluate the universal applicability of the workflow, we
employed the full pipeline on Erlangen data sets. Again, we ran

all machine learning methods to find the best performing method
using the Erlangen-A data set. Gradient boosting achieved the
best performance (AUROC 0.94; AUPRC 0.85; F1 score 0.81)
(Figure 5). The probability cut-offs for optimized PPV (> 0.90)
and optimized sensitivity (>0.90) were 0.79 and 0.19,
respectively (Multimedia Appendix 5).

Figure 5. (A) Receiver operating characteristics and (B) precision-recall curves for all machine learning methods (solid lines) and the naïve word-matching
method (dotted line) in the training set (Erlangen-A).

Final Method Testing of Case Identification
When we applied the model on the test data set (Erlangen-B),
we obtained similar performance (Table 2) with the predefined
cut-offs as those found for the training data set (Erlangen-A).

The gradient boosting classifier identified 59 cases with a cut-off
of 0.79 (with corresponding PPV 0.97, sensitivity 0.51,
specificity 0.99, NPV 0.87, and F1 score 0.67) and 131 cases
with the cut-off of 0.19 (with corresponding PPV 0.72,
sensitivity 0.84, specificity 0.90, NPV 0.95, and F1 score 0.77).

Table 2. Gradient boosting confusion matrices for the Erlangen-B test set (n=478).

Gradient boosting 2 (cut-off=0.19)Gradient boosting 1 (cut-off=0.79)Clinician-based

Rheumatoid arthritisNon–rheumatoid arthritisRheumatoid arthritisNon–rheumatoid arthritis

37 (false positive)329 (true negative)2 (false positive)364 (true negative)Non–rheumatoid arthritis

94 (true positive)18 (false negative)57 (true positive)55 (false negative)Rheumatoid arthritis

Discussion

Principal Findings
Our study describes the results of a pipeline that applies multiple
machine learning methods as well as naïve word-matching to
create algorithms of case selection (patients with rheumatoid
arthritis in our example) from electronical medical records. We
observed that most methods outperform a naïve word matching
algorithm. Our pipeline created algorithms on both Dutch and
German data that showed a high performance in the testing and

validation phase (F1 score 0.83 and 0.82 respectively). When
we defined the cut-offs for case selection from the first data set
aiming for either a high sensitivity or high PPV, we observed
that the performances were robust in the second data sets
(Leiden-B: PPV 0.94 and sensitivity 0.93; Erlangen-B: PPV
0.97 and sensitivity 0.84).

We believe that our approach of making a center-specific
algorithm is more attractive than the application of an algorithm
developed elsewhere, since our method is more precise, doesn’t
require standardization, and most importantly, it ensures high
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performance within the center. Our method only requires similar
effort as the application of predefined algorithms, namely chart
reviewing a subset of data. Furthermore, our workflow respects
the user’s requirements regarding the case selection. The case
selection can be tailored to being highly precise or sensitive
depending on the chosen cut-off.

Furthermore, this study shows the power of machine learning
approaches to generate cohorts of patients in seconds, laying a
foundation for allowing studies of cohorts with an unprecedented
low cost.

When applying our support vector machine classifier on the
complete Leiden University Medical Centre’s database of 23,300
cases (including the 3000 annotated records) we identified 2873
rheumatoid arthritis cases when employing the stringent
probability threshold of 0.99. The automatic annotation only
took 6.17 seconds, a fraction of the amount of time it would
take to review the medical charts manually.

Future Directions
Our aim was to implement a broadly applicable workflow. The
current versions require installing Anaconda (version 5.1.0) and
Python (version 3.6). Researchers without any computational
experience might feel certain reluctance to start the pipeline.
We tested (without quantification) how easy someone outside
our center could run the pipeline, by sending the scripts to
scientists at Erlangen. Though they implemented the pipeline
with relative ease, we do acknowledge that it was done by
someone with experience in computational languages. Also,
testing the pipeline in Erlangen exposed some unclarities in the
scripts, which have been improved. The next step would be to
perform a usability study, where we could ask users for their
experience as well as test how much time it takes them to get
the script running. We could further improve the usability of
the pipeline by creation of a web-based interface where people
could upload their data and get back their results automatically.
This would require substantial computational resources as the
data sets are large. In addition, we would need to ensure
encryptions processes as clinical notes have a high risk to breach
privacy.

Limitations
We want to note 3 important shortcomings of our study. The
first limitation is that deploying the pipeline requires user
familiarity with implementation software. Our proposed
workflow facilitates building a classifier with a step-by-step
implementation. Affinity with programming is not required,
because all functions for training and evaluation are already
provided. However, some software experience is beneficial
when setting up the environment for the pipeline to run. With
the emergence of machine learning and natural language
processing we would argue that it becomes increasingly useful
to possess the skills required to implement software.

Second, we acknowledge that the workflow was evaluated in
only 2 centers, both with Germanic languages. Although the
pipeline provides language-specific preprocessing with
pretrained tools for most languages, it would be interesting to
investigate if similar performance can be achieved in centers

with low lexical similarities to the Dutch language (eg,
languages without a Latin-based alphabet).

Finally, we acknowledge that the models’ performances can be
further optimized by fine-tuning hyperparameters. These are
parameters of the machine learning method that are provided
prior to training the machine learning method. Additionally, it
is possible to adjust the size of the n-grams to improve the
performance. Since our models consistently performed very
well in training and testing, we did not optimize any parameters
in our study. Furthermore, we only evaluated a handful of
candidate machine learning methods. Our selection is by no
means an exhaustive list of available techniques in the field.
We selected these methods as they cover a variety of machine
learning method and are widely known.

Lessons Learned
We were able to conduct a stringent flow of training and testing,
whereby we used several independent data sets to, first, optimize
the classifiers, and second, to ensure reliable calculations of the
classifiers’ performances by using k-fold cross-validation and
both receiver operating characteristic and precision recall curves
on 10-fold cross-validation, providing a good indication of
performance on unseen data.

To select the best classifier, we performed paired t tests on 5×2
cross-validation rather than 10-fold cross-validation. Although
performing a paired t test on 10-fold cross-validation is a very
common practice, we learned that this test is not recommended.
The correlation between overlaps violates the t test’s assumption
of independence, resulting in more false positives (increased
type I error); 5×2 cross-validation splits the data set 50/50 and
is, therefore, more suitable for statistical analysis. However,
5×2 cross-validation is confined to a small training set, which
is why we also used 10 cross-validations to approximate the
performance on unseen data.

Our study is not the first to examine methods for disease
identification from EHR [3]. Studies have employed
high-throughput methods on structured data such as ICD
(billing) codes. Regrettably, such codes have a poor performance
because they describe why a patient is examined, which does
not strictly mean that a patient has that diagnosis. More
successful algorithms (often called phenotype algorithms)
combined a variety of methods including rule-based case
identification and natural language processing [2]. Though these
algorithms have a good median performance when tested in
multiple clinics, on an individual center PPV varies (below 0.5
for several clinics) [2]. Moreover, several centers required
additional tailoring to allow application of the algorithms. This
is not surprising since health clinics have different protocols
for registering information.

As gold standard, we purposely chose the diagnosis of the
treating rheumatologist in contrast to counting the disease
classification criteria [17,18]. The problem with the latter is that
classification criteria have been developed for research and not
for clinical practice where all information including additional
tests in the differential diagnostic workup are taken into account.
Moreover, the exact information for individual criteria is often
not precisely registered in EHRs.
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We ran several sensitivity analyses to explore the influence of
disease prevalence and number of selected patients on the
model's performance. The support vector machine classifier
was robust over different selections of training data (low
standard error on the cross-validation results), number of training
samples, and imbalances of case number. These analyses also
showed that in our Leiden data the annotation of 600 patients
would have been sufficient to build a reliable classifier. We
acknowledge that due to difference in feature variance, the
optimal number of patients required to train the classifier might
differ between centers.

Generalizability of the Workflow
The support vector machine was the best classifier for Leiden-A
(F1 score 0.83), although the difference was not significant with
respect to the gradient boosting, neural networks, and random
forest. The support vector machine was employed in the
independent Leiden-B data set with similarly good performance
(F1 score 0.81). We predefined 2 thresholds of the rheumatoid
arthritis support vector machine probabilities on the first Leiden
data (Leiden-A) aiming for either a high precision (PPV 0.94),
or a high sensitivity (sensitivity 0.93). When we applied these
predefined cut-offs in the second set of patients we obtained
similarly high test characteristics (PPV 0.96, sensitivity 0.70,
specificity 1.00, NPV 1.00 with the highly precise threshold,
and PPV 0.72, sensitivity 0.96, specificity 0.97, NPV 1.00 with
the highly sensitive threshold). Finally, we ran the same

workflow of training and testing as employed on the Dutch
Leiden data to the German Erlangen data. Again, we built a
high performing classifier (in this case gradient boosting
performed best) that gave consistent results for both settings
(PPV 0.97, sensitivity 0.51, specificity 0.99, NPV 0.87 with the
highly precise threshold, and PPV 0.72, sensitivity 0.84,
specificity 0.90, NPV 0.95 with the highly inclusive threshold).

The gradient boosting has the best performance in the Erlangen
data, while in the Leiden data the support vector machine
performs the best. This is not necessarily surprising, as “there
is no such thing as a free lunch” (meaning that a universal best
algorithm does not exist) [19]. The high performance of the
support vector machine is achieved by generalizing the Leiden
data. There is no guarantee that the technique used in the Leiden
data set will also perform the best in the Erlangen data set.
Notably, in each data set, both methods performed very well
with only very modest differences. The slight deviations in
performance between the methods could be caused by language
differences and characteristic notations of the center.

In accordance with the FAIR principles [20], we have made all
our scripts publicly available and optimized them so scientists
may use them regardless of prior experience (Figure 6) [16].
We advise centers not to use our specific classifier but to follow
the workflow as presented in this paper and build a classifier
that fits the local data best.

Figure 6. Flowchart describing the steps to apply the machine learning scripts to new data. EHR: electronic health record; MLM: machine learning
method; NLP: natural language processing; PPV: positive predictive value; ROC: receiver operating characteristic; TF-IDF: term frequency by inverse
document frequency.

Conclusion
The workflow facilitates the production of highly reliable
center-specific machine learning methods for the identification
of patients with rheumatoid arthritis from format-free text fields.

Our results suggest that our workflow can easily be applied to
other EHRs or other diseases and is not restrained by specific
language, EHR software, or treatments. This methodology of
machine learning for EHR data extraction facilitates cohort
studies (with regard to cost and size).
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