JMIR Medical Informatics

Clinical informatics, decision support for health professionals, electronic health records, and ehealth infrastructures

Editor-in-Chief:

Christian Lovis, MD, MPH, FACMI, Division of Medical Information Sciences, University Hospitals of Geneva (HUG), University of Geneva (UNIGE), Switzerland


Impact Factor 2.96

JMIR Medical Informatics (JMI, ISSN 2291-9694; Impact Factor: 2.96) (Editor-in-chief: Christian Lovis MD MPH FACMI) is a PubMed/SCIE-indexed journal that focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. In June 2021, the journal received an impact factor of 2.96. 

Published by JMIR Publications, JMIR Medical Informatics has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.

JMIR Medical Informatics adheres to rigorous quality standards, involving a rapid and thorough peer-review process, professional copyediting, professional production of PDF, XHTML, and XML proofs (ready for deposit in PubMed Central/PubMed).

Recent Articles

Article Thumbnail
Adoption and Change Management of eHealth Systems

Increasingly popular in the health care domain, electronic personal health records (PHRs) have the potential to foster engagement toward improving health outcomes, achieving efficiencies in care, and reducing costs. Despite the touted benefits of PHRs, their uptake is lackluster, with low adoption rates.

|
Article Thumbnail
Natural Language Processing

In the case of Korean institutions and enterprises that collect nonstandardized and nonunified formats of electronic medical examination results from multiple medical institutions, a group of experienced nurses who can understand the results and related contexts initially classified the reports manually. The classification guidelines were established by years of workers’ clinical experiences and there were attempts to automate the classification work. However, there have been problems in which rule-based algorithms or human labor–intensive efforts can be time-consuming or limited owing to high potential errors. We investigated natural language processing (NLP) architectures and proposed ensemble models to create automated classifiers.

|
Article Thumbnail
Viewpoints on and Experiences with Digital Technologies in Health

Physician burnout in the United States has been growing at an alarming rate, and health care organizations are beginning to invest significant resources in combating this phenomenon. Although the causes for burnout are multifactorial, a key issue that affects physicians is that they spend a significant proportion of their time interacting with their electronic health record (EHR) system, primarily because of the need to sift through increasing amounts of patient data, coupled with a significant documentation burden. This has led to physicians spending increasing amounts of time with the EHR outside working hours trying to catch up on paperwork (“pajama time”), which is a factor linked to burnout. In this paper, we propose an innovative model of EHR training using high-fidelity EHR simulations designed to facilitate efficient optimization of EHR use by clinicians and emphasize the importance of both lifelong learning and physician well-being.

|
Article Thumbnail
Natural Language Processing

Twitter is a real-time messaging platform widely used by people and organizations to share information on many topics. Systematic monitoring of social media posts (infodemiology or infoveillance) could be useful to detect misinformation outbreaks as well as to reduce reporting lag time and to provide an independent complementary source of data compared with traditional surveillance approaches. However, such an analysis is currently not possible in the Arabic-speaking world owing to a lack of basic building blocks for research and dialectal variation.

|
Article Thumbnail
Advanced Data Analytics in eHealth

Emergency department boarding and hospital exit block are primary causes of emergency department crowding and have been conclusively associated with poor patient outcomes and major threats to patient safety. Boarding occurs when a patient is delayed or blocked from transitioning out of the emergency department because of dysfunctional transition or bed assignment processes. Predictive models for estimating the probability of an occurrence of this type could be useful in reducing or preventing emergency department boarding and hospital exit block, to reduce emergency department crowding.

|
Article Thumbnail
Machine Learning

The rapid growth of the biomedical literature makes identifying strong evidence a time-consuming task. Applying machine learning to the process could be a viable solution that limits effort while maintaining accuracy.

|
Article Thumbnail
Viewpoints on and Experiences with Digital Technologies in Health

The use of machine learning to develop intelligent software tools for the interpretation of radiology images has gained widespread attention in recent years. The development, deployment, and eventual adoption of these models in clinical practice, however, remains fraught with challenges. In this paper, we propose a list of key considerations that machine learning researchers must recognize and address to make their models accurate, robust, and usable in practice. We discuss insufficient training data, decentralized data sets, high cost of annotations, ambiguous ground truth, imbalance in class representation, asymmetric misclassification costs, relevant performance metrics, generalization of models to unseen data sets, model decay, adversarial attacks, explainability, fairness and bias, and clinical validation. We describe each consideration and identify the techniques used to address it. Although these techniques have been discussed in prior research, by freshly examining them in the context of medical imaging and compiling them in the form of a laundry list, we hope to make them more accessible to researchers, software developers, radiologists, and other stakeholders.

|
Article Thumbnail
Electronic Health Records

Collaboration is vital within health care institutions, and it allows for the effective use of collective health care worker (HCW) expertise. Human-computer interactions involving electronic health records (EHRs) have become pervasive and act as an avenue for quantifying these collaborations using statistical and network analysis methods.

|
Article Thumbnail
Machine Learning

Current health information understandability research uses medical readability formulas to assess the cognitive difficulty of health education resources. This is based on an implicit assumption that medical domain knowledge represented by uncommon words or jargon form the sole barriers to health information access among the public. Our study challenged this by showing that, for readers from non-English speaking backgrounds with higher education attainment, semantic features of English health texts that underpin the knowledge structure of English health texts, rather than medical jargon, can explain the cognitive accessibility of health materials among readers with better understanding of English health terms yet limited exposure to English-based health education environments and traditions.

|
Article Thumbnail
Electronic Health Records

It is assumed that the implementation of health information technology introduces new vulnerabilities within a complex sociotechnical health care system, but no international consensus exists on a standardized format for enhancing the collection, analysis, and interpretation of technology-induced errors.

|
Article Thumbnail
Machine Learning

In the pediatric intensive care unit (PICU), quantifying illness severity can be guided by risk models to enable timely identification and appropriate intervention. Logistic regression models, including the pediatric index of mortality 2 (PIM-2) and pediatric risk of mortality III (PRISM-III), produce a mortality risk score using data that are routinely available at PICU admission. Artificial neural networks (ANNs) outperform regression models in some medical fields.

|

We are working in partnership with