Published on in Vol 10, No 4 (2022): April

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/34274, first published .
Exploring Patient Multimorbidity and Complexity Using Health Insurance Claims Data: A Cluster Analysis Approach

Exploring Patient Multimorbidity and Complexity Using Health Insurance Claims Data: A Cluster Analysis Approach

Exploring Patient Multimorbidity and Complexity Using Health Insurance Claims Data: A Cluster Analysis Approach

Journals

  1. Beuken M, Kanera I, Ezendam N, Braun S, Zoet M. Identification and Potential Use of Clusters of Patients With Colorectal Cancer and Patients With Prostate Cancer in Clinical Practice: Explorative Mixed Methods Study. JMIR Cancer 2022;8(4):e42908 View
  2. Boussina A, Wardi G, Shashikumar S, Malhotra A, Zheng K, Nemati S. Representation Learning and Spectral Clustering for the Development and External Validation of Dynamic Sepsis Phenotypes: Observational Cohort Study. Journal of Medical Internet Research 2023;25:e45614 View
  3. Beuken M, Kleynen M, Braun S, Van Berkel K, van der Kallen C, Koster A, Bosma H, Berendschot T, Houben A, Dukers-Muijrers N, van den Bergh J, Kroon A, Kanera I. Identification of Clusters in a Population With Obesity Using Machine Learning: Secondary Analysis of The Maastricht Study. JMIR Medical Informatics 2025;13:e64479 View