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Abstract

Background: Although the trend of progressing morbidity is widely recognized, there are numerous challenges when studying
multimorbidity and patient complexity. For multimorbid or complex patients, prone to fragmented care and high health care use,
novel estimation approaches need to be developed.

Objective: This study aims to investigate the patient multimorbidity and complexity of Swiss residents aged ≥50 years using
clustering methodology in claims data.

Methods: We adopted a clustering methodology based on random forests and used 34 pharmacy-based cost groups as the only
input feature for the procedure. To detect clusters, we applied hierarchical density-based spatial clustering of applications with
noise. The reasonable hyperparameters were chosen based on various metrics embedded in the algorithms (out-of-bag
misclassification error, normalized stress, and cluster persistence) and the clinical relevance of the obtained clusters.

Results: Based on cluster analysis output for 18,732 individuals, we identified an outlier group and 7 clusters: individuals
without diseases, patients with only hypertension-related diseases, patients with only mental diseases, complex high-cost high-need
patients, slightly complex patients with inexpensive low-severity pharmacy-based cost groups, patients with 1 costly disease, and
older high-risk patients.

Conclusions: Our study demonstrated that cluster analysis based on pharmacy-based cost group information from claims-based
data is feasible and highlights clinically relevant clusters. Such an approach allows expanding the understanding of multimorbidity
beyond simple disease counts and can identify the population profiles with increased health care use and costs. This study may
foster the development of integrated and coordinated care, which is high on the agenda in policy making, care planning, and
delivery.

(JMIR Med Inform 2022;10(4):e34274) doi: 10.2196/34274
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Introduction

Health care systems worldwide are facing considerable
challenges from the increasing number of chronic and
multimorbid patients, characterized by complex needs and
frequent transitions between care settings [1]. In Switzerland,
2.2 million people report a chronic disease and nearly 20% of
the population older than 50 years have multiple chronic diseases
(multimorbidity) [2]. Although the trend of progressing
multimorbidity is widely recognized [3-6], it is still unclear how
best to take care of patients with multimorbidity and which
interventions would be effective. For more than two decades,
integrated and coordinated care have been developed worldwide
[7]. Nevertheless, integrated and coordinated care faces
continuing challenges such as scaling-up, implementation, and
sustainability difficulties. Additionally, integrated and
coordinated care requires development of novel approaches to
evaluate and measure patients multimorbidity and complexity.
This is key to stratify the targeted population and adapt the
intervention to the needs of the patients. Often, such evaluations
and measures rely on morbidity indices (eg, Charlson and
Elixhauser) or on the number of (self-reported) chronic
conditions or comorbidities [8]. Whereas the former were
developed in an inpatient setting as predictors of mortality, the
latter may not comprehensively reflect the patient’s disease
burden and complexity. Despite these limitations, they remain
often used because of their relative accessibility and simplicity.
In settings where electronic medical (health) records, national
disease registries, or data on chronic conditions are unavailable,
administrative health insurance claims data represent a
potentially useful source of information. In fact, they are
increasingly used in health services research, especially to
express multimorbidity using pharmacy-based cost groups
(PCGs) [9,10]. PCGs, based on use of prescribed drugs rather
than on clinical information, were developed as a proxy for
morbidity measure [11]. Although the approach has limitations
related to underestimation of medicines used, unclaimed, or
paid out-of-pocket and thus not present in the data or the
assumption that the drug is used exclusively for treating the
particular condition [11,12], it allows mapping patient profiles
to reflect their morbidity status. As such mapping approaches
and comorbidity counts are considered simplistic [13],
researchers may consider alternative methods to investigate
patient complexity more exhaustively. One such method is
cluster analysis, which relies on the idea that many common
conditions cluster together in the population in predictable
patterns [13]. It has been shown that cluster analysis of
real-world data for drug use research can be used for detecting
clinically plausible subgroups [14]. Similar approaches of
classifications based on multimorbidity patterns have been
applied in the literature [14-16], but using PCGs as the
multimorbidity indicator for cluster analysis is novel. In that
context, the aim of our study is to investigate patient
multimorbidity and complexity beyond simple mapping and
counts of PCGs, using clustering methodology in claims data
of Swiss residents aged ≥50 years.

Methods

Data Source and Sample
We included data of 240,511 insured people aged ≥50 years
continuously enrolled in one of the largest health insurance
companies in Switzerland, Groupe Mutuel, for the 2015-2018
period. In addition to demographic information (age and gender),
data contained PCGs for each individual, costs covered by the
patient (cost sharing), type of health insurance model (with or
without gatekeeping), and reimbursed health care services:
number of visits to various physicians with associated costs and
physicians’ specialization and hospitalizations. To identify
insured persons with cost-intensive, chronic diseases and
correspondingly high health care use based on their drug
consumption, health insurance companies are translating the
drug use data reflecting active ingredient and quantity, based
on Anatomical Therapeutic Chemical and defined daily dose,
into the PCGs. This procedure was developed and officially
accepted by the Federal Office of Public Health in Switzerland
[17]. In our study, the patients were classified as multimorbid
when they were assigned two or more PCGs, based on their
yearly drug use.

Ethical Considerations
Data were deidentified by the insurance company to guarantee
anonymization, and ethical approval for this study was waived
by the Cantonal Commission for the Ethics of Research on
Human Beings (Lausanne, Switzerland).

Cluster Analysis
We adopted a clustering methodology based on random forests
(RFs) [18]—a popular classification and regression tree-based
method—that includes several steps and machine learning
algorithms [19-21]. The methodology is inspired by a clustering
methodology designed by Breiman and Cutler [19], the creators
of RFs [20,21].

In a preprocessing step, we extracted 34 PCGs as the only input
feature for the clustering procedure. We grouped the 34 PCGs
into 15 disease categories, which were valued meaningful from
a clinical perspective (Multimedia Appendix 1). We then
considered the first year of information only, and extracted a
10% random sample, to allow for effective processing for the
computationally expensive steps. To confirm the results, the
random sampling was performed multiple times, which led to
similar clusters. Finally, we discarded points showing no PCG
or only one type of PCG. Since we ultimately use an algorithm
to detect clusters based on density given by the distances
between points, the presence of many identical points at the
same positions may perturb the algorithm and unnecessarily
make the computation more expensive. Keeping a small random
sample of these points would reduce the perturbation but not
change the results while adding a dispensable complication,
notably for the hyperparameter selection needed to detect these
additional clusters.

To initiate the clustering procedure, we created a synthetic data
set of the same size as the original data, by random sampling
from the distributions of each input variable within the data.
The idea is then to train an RF model to classify synthetic and
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original points, with the aim of taking advantage of the proximity
measure, an embedded RF metric of similarity between points.
An RF aggregates the prediction of multiple decision trees (DTs)
by considering the class they predict in majority. DTs are
classification models that separate the data points into subspaces
(leaves) by imposing thresholds on the input variables and
predicting the class within each subspace as the majority class.
The proximity between two points is then computed as the
number of times they fall in the same leaf across the trees in
the forest. To stabilize the random effects of RFs, we trained
10 RF models, computed the proximities for all pairs of points
for each model, and averaged them to obtain a mean proximity
matrix characterizing the data. We then used multidimensional
scaling (MDS) [22] to project the corresponding distance matrix
(1 – proximity matrix / (number of trees)) in 2D while preserving
the distances and allow for visualization of the resulting clusters.
Finally, we applied hierarchical density-based spatial clustering
of applications with noise (HDBSCAN) [23] to detect clusters
within the obtained 2D data, after discarding the synthetic points
from the data. HDBSCAN extracts clusters as dense gatherings
of points separated by sparse regions with few points. Given
that no cross-validation is possible with clustering
methodologies, reasonable hyperparameters were chosen for
the RF, MDS, and HDBSCAN steps based on various metrics
embedded in the algorithms and the clinical relevance of the
obtained clusters. The metrics includes the out-of-bag (OOB)
misclassification error, which shows how well RF differentiates
the original data from the synthetic one. The outcome reflects
how much structure there is in the data [19]. Another metric
was normalized stress, measuring whether the distances between
points are reasonably preserved after projection [22], and the
cluster persistence, HDBSCAN embedded metrics indicating
how well the clusters are defined and separated from each other
[23]. In practice, we used the HDBSCAN and Scikit-learn
libraries (in Python) for the final clustering and all previous
steps.

Results

After discarding individuals with missing information, our data
set comprised 18,732 individuals (points). An initial examination
of the data set exhibited three large “single” clusters that we
extracted prior to the clustering procedure, showing no PCGs,
only hypertension PCGs, and only mental disease PCGs,
representing 67.9% (n=12,720), 9.7% (n=1813), and 4.1%
(n=765) of the population, respectively. Clustering analyses,
performed on the remaining 3434 patients not included in the
latter “single” clusters, identified four distinct clusters: Cluster
0 to Cluster 3, numbered in the order in which they are detected

while applying HDBSCAN (Figure 1). The clusters can be
clearly visualized from this tree (Figure 2); and a good
persistence of 0.29, 0.24, 0.15, and 0.24, respectively, was
found. The average OOB misclassification error from the 10
RFs was 0.51, which is quite high, showing that RF does not
differentiate well between the original and the synthetic data,
and there is not much structure in the data. Regarding the
performed MDS, the normalized stress was 0.31, indicating
reasonable preserving of the distances between points.

The 4 detected clusters encompass different mixes of PCGs
(Table 1 and Figure 3): Cluster 0 comprises a large mix of PCGs
(mental + hypertension + pain + asthma [chronic obstructive
pulmonary disease]) often appearing jointly; Cluster 1 comprises
PCGs (thyroid, hypertension, glaucoma, and mix of others)
appearing jointly less often; Cluster 2 comprises asthma,
Parkinson, cardiac diseases, and pain rarely appearing jointly;
and Cluster 3 comprises a large mix of PCGs almost never
appearing jointly (single diseases).

The following description and interpretation of clusters is based
on the descriptive statistics of health care use and costs data
(Table 1), which help to understand the underlying principle of
grouping individuals into PCG clusters. First, the members of
Cluster 0 (n=817, 4.4%) had the highest number of PCGs and
highest costs and health care use, and were referred to as
“complex high-cost high-need patients” (for a detailed
description, see Table 1). The degree of complexity in these
settings was reflected as the combination of the following
characteristics interpreted from descriptive statistics (Table 1):
average number of PCGs, percentage of multimorbid patients,
levels of health care use (eg, number of doctor consultations
and hospital stays), and costs in the population subgroup. The
members of Cluster 1 (n=709, 3.8%), although having multiple
PCGs, had health care costs and use lower than in Cluster 0;
thus, they were referred to as “slightly complex with inexpensive
low-severity PCGs.” The members of Cluster 2 (n=531, 2.8%)
were of the oldest age and presented especially high use of
hospitalizations and visits to the generalist doctor and, thus,
were referred to as “oldest at high risk.” High risk, interpreted
in these settings from the descriptive statistics, was reflected
by relatively high use of hospital care, yet lower than in the
most complex cluster: long length of stay (5.6 and 6.6 nights
for clusters “Oldest at risk” and “Complex high-cost high-need,”
respectively) and high inpatient costs (CHF 2749 [US $2950]
and CHF 3109 [US $3333], respectively). The members of
Cluster 3 (n=1056, 5.6%) were characterized by a relatively
small number of PCGs (close to 1) and the highest costs of
medications and, thus, were referred to as “patients with 1 costly
disease.”
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Figure 1. MDS projection of the data in two dimensions. The four clusters found by HDBSCAN are marked by the different colors and coded with
the labels 0, 1, 2, and 3. The code –1 refers to the outliers. HDBSCAN: hierarchical density-based spatial clustering of applications with noise; MDS:
multidimensional scaling.

Figure 2. Condensed tree resulting from the hierarchical density-based spatial clustering of applications with noise algorithm performed on the data.
Note: similar to a classical dendogram in a hierarchical clustering setting, the first yellow rectangle represents the entire data, which is split into two
parts (called “branches”) when we reduce the maximum distance allowed between points within each branch (λ value = 1 / distance). Each rectangle
represents a subpart of the data after a split and with a size proportional to the number of data points in the subpart. The entire data splits into cluster 0
and the green rectangle, which further splits into cluster 1 and a turquoise rectangle, when we reduce the distance allowed. The 4 detected clusters
(signified by a circle and their number) are the branches that persist the most (do not split further, according to various rules of the algorithm) when the
imposed maximum distance between points decreases while keeping a minimum size. The persistence is proportional to the length of the rectangles
across the vertical axis. The tree can be interpreted as a probability distribution function upside down, with each cluster being a peak in the distribution.
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Table 1. Descriptive statistics of clusters.

Mental health
“Only mental
diseases”

Hyperten-
sion “Only
hyperten-
sion”

No PCGsCluster 3 “Pa-
tients with 1
costly dis-
ease”

Cluster 2
“Oldest at
high risk”

Cluster 1
“Slightly
complex
with inexpen-
sive low-
severity

PCGsa”

Cluster 0
“Complex
high-cost
high-need”

OutliersAll dataStatistics

765

(4.1)

1813

(9.7)

12,720

(67.9)

1056

(5.6)

531

(2.8)

709

(3.8)

817

(4.4)

321

(1.7)

18,732

(100.0)

Patients, n (%)

63.2

(10.9)

67.6

(9.7)

64.0

(10.4)

68.1

(11.2)

69.4

(10.9)

67.8

(10.2)

66.3

(10.6)

66.3

(10.8)

65.0

(10.6)

Age (years), mean
(SD)

Sex, n (%)

221

(29)

1158

(64)

5772

(45)

536

(51)

279

(53)

205

(29)

325

(40)

130

(40)

8626

(46)

Men

544

(71)

655

(36)

6948

(55)

520

(49)

252

(47)

504

(71)

492

(60)

191

(60)

10,106

(54)

Women

558

(599)

612

(657)

908

(974)

562

(603)

524

(562)

535

(574)

448

(481)

511

(548)

794

(852)

Deductible (CHF;
US $), mean

0.50.50.50.40.40.40.40.40.5Model with

gatekeeperb

1.01.00.01.11.31.72.11.20.4Number of PCGs,
mean

0.00.00.00.10.30.60.80.10.1Multimorbid (yes)b

7571

(8125)

5462

(5861)

4074

(4372)

10,362

(11,120)

9728

(10,439)

7477

(8024)

11,731

(12,589)

7967

(8549)

5395

(5789)

Ambulatory costs
(CHF; US $), mean

1585

(1701)

1372

(1472)

1199

(1287)

1575

(1690)

2749

(2950)

1811

(1943)

3109

(3336)

2134

(2290)

1419

(1523)

Inpatient costs
(CHF; US $), mean

1961

(2104)

1732

(1859)

965

(1036)

4450

(4775)

3587

(3849)

2221

(2383)

4073

(4371)

2683

(2879)

1563

(1677)

Costs of medications
(CHF; US $), mean

12,025

(12,904)

9439

(10,129)

6611

(7094)

17,312

(18,578)

17,057

(18,304)

12,440

(13,349)

19,950

(21,409)

13,684

(14,684)

8929

(9582)

Total cost (CHF; US
$), mean

3.52.42.03.45.63.66.64.32.6Number of days in
the hospital, mean

0.30.30.20.30.40.30.50.40.2Number of hospital-
izations in a year,
mean

18.512.79.916.117.517.020.216.011.9Total number of
consultations, mean

9.58.36.09.411.39.811.610.07.2Number of consulta-
tions with generalist,
mean

Mental dis-
eases

Hyperten-
sion

N/AdCancer + dia-
betes + inflam-
matory + im-

Asthma +
Parkinson +
cardiac dis-
eases + pain

Thyroid +
hypertension
+ glaucoma
+ mix of oth-
ers

Mental + hy-
pertension +
pain + asth-

ma (COPDc)

Mostly
Pain

All 34
PCGs

PCG groups in the
cluster

mune + other
mental + glau-
coma + HIV

JMIR Med Inform 2022 | vol. 10 | iss. 4 | e34274 | p. 5https://medinform.jmir.org/2022/4/e34274
(page number not for citation purposes)

Nicolet et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Mental health
“Only mental
diseases”

Hyperten-
sion “Only
hyperten-
sion”

No PCGsCluster 3 “Pa-
tients with 1
costly dis-
ease”

Cluster 2
“Oldest at
high risk”

Cluster 1
“Slightly
complex
with inexpen-
sive low-
severity

PCGsa”

Cluster 0
“Complex
high-cost
high-need”

OutliersAll dataStatistics

Youngest,
more female
patients, rela-
tively low de-
ductibles, low
health care use
and costs (but
higher than for
hypertension
group), a lot
of visits to
doctors

Slightly
older, more
male pa-
tients, rela-
tively low
health care
use and
costs

Young,
highest de-
ductibles,
low health
care use
and costs

Relatively old,
on average 1
PCG, highest
cost of
medicaments,
and high ambu-
latory costs,
relatively low
hospitaliza-
tions and doc-
tor visits

Oldest, rela-
tively low
deductibles,
some com-
plexity
(more than 1
PCGs on av-
erage), very
high use of
doctor visits
(especially
generalist),
many hospi-
talizations
and high in-
patient costs

Slightly old-
er, more fe-
male pa-
tients, rela-
tively low
deductibles,
high amount
of PCGs
(1.7) and
multimorbid-
ity (but less
than cluster
0), relatively
low health
care use and
costs

Average age,
slightly few-
er male pa-
tients, lowest
deductibles,
highest
amount of
PCGs and
multimorbid-
ity, highest
health care
use and costs
(except for
costs of med-
ications)

Average
age,
slightly
fewer
male pa-
tients,
higher
hospital
costs and
hospital
stays

N/ADescription of the
clusters based on
overall descriptive
statistics

aPCG: pharmacy-based cost group.
bRatios rounded off to one decimal place.
cCOPD: chronic obstructive pulmonary disease.
dN/A: not applicable.
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Figure 3. Joint distributions of PCGs within the 4 clusters (group 0-3) and outliers (group –1). PCG: pharmacy-based cost group.

Discussion

Our study shows that performing cluster analysis to explore
patient multimorbidity and complexity is feasible. We
demonstrated that individuals with single PCGs of mental
diseases or hypertension, individuals with multiple PCGs, or
individuals with a single high-cost PCG have different health
care use patterns and represent different complexity groups.

Earlier studies focusing on chronic conditions identified from
electronic health records evidenced the existence of systematic
associations between chronic diseases, whereby chronic
diseases, often from dissimilar disease categories, coappeared
within a multimorbidity pattern or cluster [24-26]. Importantly,
though, these studies showed that the complexity of
multimorbidity patterns in terms of diseases and associated drug
use increased with age, which holds true for both genders.
Moreover, in line with our findings, multiple earlier studies
used cluster analysis for identifying clinically homogenous
multimorbidity patterns in the population, where clusters were
composed of diagnosis-related groups [16,27-30]. However,
these studies used measures of multimorbidity and comorbidity
or clinical diagnosis data rather than PCGs from claims data.
This makes direct comparison of results challenging, due to the
differences in methodologies and level of diagnosis details. A
recent systematic review confirmed that analytical methods

used to identify patient profiles with multimorbid conditions
are heterogeneous (including factor analysis, multiple
correspondence analysis, hierarchical clustering, and three-step
unified-clustering method), which may explain the variation in
the multimorbidity patterns reported in various studies [31].
Despite those differences, the observed most prevalent clusters
or groups are similar across studies and included hypertensive
or metabolic diseases [28,29] and mental and behavioral diseases
[16]. The greater prevalence of and similarities in metabolic
and mental clusters were confirmed by a systematic review of
multimorbidity patterns, whereby these clusters were identified
in 9 and 10 of 14 reviewed articles, respectively [32]. One study
compared multimorbidity patterns between populations of two
European countries (Spain and the Netherlands) and found that,
indeed, the highest similarities were observed in the cardio
metabolic cluster, even though the populations are likely to
differ across countries [26].

The existing literature on the use of cluster analysis to identify
homogenous segments based on health care use and expenditures
is limited [33-37]. Specifically, the study by Nnoaham and Cann
[33] identified segments (or clusters), similar to ours, based on
health care use (expressed by visits to the physicians,
medications, and admissions) and complexity (expressed by
long-term conditions). Other studies used cluster analysis to
identify groups with high expenditures and deduced that, despite
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having a lot of heterogeneity, the high expenditures cluster
typically exhibited fair or poor health with more medical
conditions or comorbidities [34,35]. These findings confirm
ours; they nevertheless need to be interpreted with caution due
to differences in methodologies, age of the population, and level
of details available for background individual characteristics
and diagnoses. There is evidence that cluster analysis may
provide more information to decision makers than a list of
possible statistically significant variables or a list of individuals
who are the highest users [35].

To our knowledge, this is the first study using cluster analysis
to explore patients’ multimorbidity and complexity, reflected
by the mix of PCGs and health care use patterns. In addition, it
benefits from the richness of health care use data, a large sample
size, and advanced clustering methods. However, the study has
certain limitations. The first limitation stems from the process

of multiple parameters configuration, which increases
complexity while not allowing results validation. Thus, the
cluster interpretation has to rely on metrics from the algorithms,
descriptive statistics, and clinical relevance. Second, as the data
were lacking clinical information, we only relied on PCGs
mapping, which may give an incomplete picture of drug data
[9,11,12].

Our study shows that PCG-based cluster analysis of health care
use claims data allows diverting from an approach of simple
comorbidity counts and can identify the population profiles with
increased health care use and costs. Such results may provide
insightful information for policy making, care planning, and
care delivery to facilitate the transformation from procedures
and guidelines focusing on a single disease toward development
of integrated and better coordinated care.
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