Published on in Vol 10, No 2 (2022): February

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/30483, first published .
Disease Progression of Hypertrophic Cardiomyopathy: Modeling Using Machine Learning

Disease Progression of Hypertrophic Cardiomyopathy: Modeling Using Machine Learning

Disease Progression of Hypertrophic Cardiomyopathy: Modeling Using Machine Learning

Journals

  1. Rajesh E, Basheer S, Dhanaraj R, Yadav S, Kadry S, Khan M, Kim Y, Cha J. Machine Learning for Online Automatic Prediction of Common Disease Attributes Using Never-Ending Image Learner. Diagnostics 2022;13(1):95 View
  2. Mapundu M, Kabudula C, Musenge E, Olago V, Celik T. Performance evaluation of machine learning and Computer Coded Verbal Autopsy (CCVA) algorithms for cause of death determination: A comparative analysis of data from rural South Africa. Frontiers in Public Health 2022;10 View
  3. Tomasevic S, Milosevic M, Milicevic B, Simic V, Prodanovic M, Mijailovich S, Filipovic N. Computational Modeling on Drugs Effects for Left Ventricle in Cardiomyopathy Disease. Pharmaceutics 2023;15(3):793 View
  4. Loeffler S, Trayanova N. Primer on Machine Learning in Electrophysiology. Arrhythmia & Electrophysiology Review 2023;12 View
  5. Kaur S, Desai M. Unmet needs and future directions in hypertrophic cardiomyopathy. Progress in Cardiovascular Diseases 2023;80:1 View
  6. Pezoulas V, Zaridis D, Mylona E, Androutsos C, Apostolidis K, Tachos N, Fotiadis D. Synthetic data generation methods in healthcare: A review on open-source tools and methods. Computational and Structural Biotechnology Journal 2024;23:2892 View
  7. Salih A, Galazzo I, Gkontra P, Rauseo E, Lee A, Lekadir K, Radeva P, Petersen S, Menegaz G. A review of evaluation approaches for explainable AI with applications in cardiology. Artificial Intelligence Review 2024;57(9) View
  8. Zhang J, Wang X, Qiu H, Zhang Y, Han W, Wang J, Wang T, Shi Y, Huang M, Zhuang J, Guo H, Xu X. HOCM-Net: 3D coarse-to-fine structural prior fusion based segmentation network for the surgical planning of hypertrophic obstructive cardiomyopathy. Expert Systems with Applications 2024;257:125005 View
  9. Brahma A, Chatterjee S, Seal K, Fitzpatrick B, Tao Y. Development of a Cohort Analytics Tool for Monitoring Progression Patterns in Cardiovascular Diseases: Advanced Stochastic Modeling Approach. JMIR Medical Informatics 2024;12:e59392 View
  10. Mohyeldin M, Mohamed F, Molina M, Towfig M, Mustafa A, Elhussein A, Alamin F, Khaja M, Jadhav P. Artificial Intelligence in Hypertrophic Cardiomyopathy: Advances, Challenges, and Future Directions for Personalized Risk Prediction and Management. Cureus 2025 View
  11. Panichella G, Garofalo M, Sasso L, Milazzo A, Fornaro A, Pioner J, Bueno-Orovio A, van Gils M, Koivu A, Mainardi L, Le Rolle V, Agakov F, Pieroni M, Aalto-Setälä K, Hyttinen J, Olivotto I, Del Franco A. Artificial intelligence applications in hypertrophic cardiomyopathy: turns and loopholes. European Heart Journal - Digital Health 2025;6(5):853 View

Conference Proceedings

  1. Tomasevic S, Blagojevic A, Geroski T, Jovicic G, Milicevic B, Prodanovic M, Kamenko I, Bajic B, Simovic S, Davidovic G, Ristic D, Preveden A, Velicki L, Ristic A, Apostolovic S, Dolicanin E, Filipovic N. 2024 IEEE 24th International Conference on Bioinformatics and Bioengineering (BIBE). AI-Driven Decision Support System for Heart Failure Diagnosis: INTELHEART Approach Towards Personalized Treatment Strategies View
  2. Al-Barhamtoshy H, Himdi T. 2025 2nd International Conference on Advanced Innovations in Smart Cities (ICAISC). Data Generation in Healthcare Using Constraint Satisfaction Parameters (CSP) View
  3. Singla I, V A, Maurya N, Kumar A, Sharma A, Mishra H. 2025 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI). Multimodal Machine Learning Approaches for Enhanced Detection and Management of Hypertrophic Cardiomyopathy View