Published on in Vol 8, No 4 (2020): April

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/15516, first published .
Machine Learning Models for the Prediction of Postpartum Depression: Application and Comparison Based on a Cohort Study

Machine Learning Models for the Prediction of Postpartum Depression: Application and Comparison Based on a Cohort Study

Machine Learning Models for the Prediction of Postpartum Depression: Application and Comparison Based on a Cohort Study

Journals

  1. Zhang Y, Wang S, Hermann A, Joly R, Pathak J. Development and validation of a machine learning algorithm for predicting the risk of postpartum depression among pregnant women. Journal of Affective Disorders 2021;279:1 View
  2. Hochman E, Feldman B, Weizman A, Krivoy A, Gur S, Barzilay E, Gabay H, Levy J, Levinkron O, Lawrence G. Development and validation of a machine learning‐based postpartum depression prediction model: A nationwide cohort study. Depression and Anxiety 2021;38(4):400 View
  3. Espinosa C, Becker M, Marić I, Wong R, Shaw G, Gaudilliere B, Aghaeepour N, Stevenson D, Stelzer I, Peterson L, Chang A, Xenochristou M, Phongpreecha T, De Francesco D, Katz M, Blumenfeld Y, Angst M. Data-Driven Modeling of Pregnancy-Related Complications. Trends in Molecular Medicine 2021;27(8):762 View
  4. Andersson S, Bathula D, Iliadis S, Walter M, Skalkidou A. Predicting women with depressive symptoms postpartum with machine learning methods. Scientific Reports 2021;11(1) View
  5. Surodina S, Lam C, Grbich S, Milne-Ives M, van Velthoven M, Meinert E. Machine Learning for Risk Group Identification and User Data Collection in a Herpes Simplex Virus Patient Registry: Algorithm Development and Validation Study. JMIRx Med 2021;2(2):e25560 View
  6. Imura T, Toda H, Iwamoto Y, Inagawa T, Imada N, Tanaka R, Inoue Y, Araki H, Araki O. Comparison of Supervised Machine Learning Algorithms for Classifying of Home Discharge Possibility in Convalescent Stroke Patients: A Secondary Analysis. Journal of Stroke and Cerebrovascular Diseases 2021;30(10):106011 View
  7. Gosnell J, Finn M, Marckini D, Molla A, Sowinski H. Identifying Predictors of Psychological Problems Among Adolescents With Congenital Heart Disease for Referral to Psychological Care: A Pilot Study. CJC Pediatric and Congenital Heart Disease 2023;2(1):3 View
  8. Preis H, Djurić P, Ajirak M, Chen T, Mane V, Garry D, Heiselman C, Chappelle J, Lobel M. Applying machine learning methods to psychosocial screening data to improve identification of prenatal depression: Implications for clinical practice and research. Archives of Women's Mental Health 2022;25(5):965 View
  9. Saqib K, Khan A, Butt Z. Machine Learning Methods for Predicting Postpartum Depression: Scoping Review. JMIR Mental Health 2021;8(11):e29838 View
  10. Fan R, Hua T, Shen T, Jiao Z, Yue Q, Chen B, Xu Z. Identifying patients with major depressive disorder based on tryptophan hydroxylase-2 methylation using machine learning algorithms. Psychiatry Research 2021;306:114258 View
  11. Liu H, Dai A, Zhou Z, Xu X, Gao K, Li Q, Xu S, Feng Y, Chen C, Ge C, Lu Y, Zou J, Wang S. An optimization for postpartum depression risk assessment and preventive intervention strategy based machine learning approaches. Journal of Affective Disorders 2023;328:163 View
  12. Neethirajan S. Affective State Recognition in Livestock—Artificial Intelligence Approaches. Animals 2022;12(6):759 View
  13. Bilal A, Fransson E, Bränn E, Eriksson A, Zhong M, Gidén K, Elofsson U, Axfors C, Skalkidou A, Papadopoulos F. Predicting perinatal health outcomes using smartphone-based digital phenotyping and machine learning in a prospective Swedish cohort (Mom2B): study protocol. BMJ Open 2022;12(4):e059033 View
  14. Amit G, Girshovitz I, Marcus K, Zhang Y, Pathak J, Bar V, Akiva P. Estimation of postpartum depression risk from electronic health records using machine learning. BMC Pregnancy and Childbirth 2021;21(1) View
  15. Lee K, Ham B. Machine Learning on Early Diagnosis of Depression. Psychiatry Investigation 2022;19(8):597 View
  16. Zhong M, Zhang H, Yu C, Jiang J, Duan X. Application of machine learning in predicting the risk of postpartum depression: A systematic review. Journal of Affective Disorders 2022;318:364 View
  17. Gopalakrishnan A, Venkataraman R, Gururajan R, Zhou X, Zhu G. Predicting Women with Postpartum Depression Symptoms Using Machine Learning Techniques. Mathematics 2022;10(23):4570 View
  18. Li X, Ono C, Warita N, Shoji T, Nakagawa T, Usukura H, Yu Z, Takahashi Y, Ichiji K, Sugita N, Kobayashi N, Kikuchi S, Kunii Y, Murakami K, Ishikuro M, Obara T, Nakamura T, Nagami F, Takai T, Ogishima S, Sugawara J, Hoshiai T, Saito M, Tamiya G, Fuse N, Kuriyama S, Yamamoto M, Yaegashi N, Homma N, Tomita H. Heart Rate Information-Based Machine Learning Prediction of Emotions Among Pregnant Women. Frontiers in Psychiatry 2022;12 View
  19. Yang S, Yang S, Duan K, Tang Y, Ping A, Bai Z, Gao K, Shen Y, Chen M, Yu R, Wang S. The development and application of a prediction model for postpartum depression: optimizing risk assessment and prevention in the clinic. Journal of Affective Disorders 2022;296:434 View
  20. Chen T, Chu H, Tai Y, Yang S. Performances of Depression Detection through Deep Learning-based Natural Language Processing to Mandarin Chinese Medical Records. Taiwanese Journal of Psychiatry 2022;36(1):32 View
  21. Novick A, Kwitowski M, Dempsey J, Cooke D, Dempsey A. Technology-Based Approaches for Supporting Perinatal Mental Health. Current Psychiatry Reports 2022;24(9):419 View
  22. Matsuo S, Ushida T, Emoto R, Moriyama Y, Iitani Y, Nakamura N, Imai K, Nakano‐Kobayashi T, Yoshida S, Yamashita M, Matsui S, Kajiyama H, Kotani T. Machine learning prediction models for postpartum depression: A multicenter study in Japan. Journal of Obstetrics and Gynaecology Research 2022;48(7):1775 View
  23. Xu W, Sampson M. Prenatal and Childbirth Risk Factors of Postpartum Pain and Depression: A Machine Learning Approach. Maternal and Child Health Journal 2023;27(2):286 View
  24. Fischbein R, Cook H, Baughman K, Díaz S. Using machine learning to predict help-seeking among 2016–2018 Pregnancy Risk Assessment Monitoring System participants with postpartum depression symptoms. Women's Health 2022;18 View
  25. Qiao D, Liu H, Zhang X, Lei L, Sun N, Yang C, Li G, Guo M, Zhang Y, Zhang K, Liu Z. Exploring the potential of thyroid hormones to predict clinical improvements in depressive patients: A machine learning analysis of the real-world based study.. Journal of Affective Disorders 2022;299:159 View
  26. Cho K, Choi J, Han S. Validation of depression determinants in caregivers of dementia patients with machine learning algorithms and statistical model. Frontiers in Medicine 2023;10 View
  27. Cellini P, Pigoni A, Delvecchio G, Moltrasio C, Brambilla P. Machine learning in the prediction of postpartum depression: A review. Journal of Affective Disorders 2022;309:350 View
  28. Belciug S. Artificial Intelligence and the second trimester of pregnancy: A literature survey. Intelligent Decision Technologies 2023;17(1):263 View
  29. Qi W, Wang Y, Li C, He K, Wang Y, Huang S, Li C, Guo Q, Hu J. Predictive models for predicting the risk of maternal postpartum depression: A systematic review and evaluation. Journal of Affective Disorders 2023;333:107 View
  30. Wakefield C, Frasch M. Predicting Patients Requiring Treatment for Depression in the Postpartum Period Using Common Electronic Medical Record Data Available Antepartum. AJPM Focus 2023;2(3):100100 View
  31. Li X, Ono C, Warita N, Shoji T, Nakagawa T, Usukura H, Yu Z, Takahashi Y, Ichiji K, Sugita N, Kobayashi N, Kikuchi S, Kimura R, Hamaie Y, Hino M, Kunii Y, Murakami K, Ishikuro M, Obara T, Nakamura T, Nagami F, Takai T, Ogishima S, Sugawara J, Hoshiai T, Saito M, Tamiya G, Fuse N, Fujii S, Nakayama M, Kuriyama S, Yamamoto M, Yaegashi N, Homma N, Tomita H. Comprehensive evaluation of machine learning algorithms for predicting sleep–wake conditions and differentiating between the wake conditions before and after sleep during pregnancy based on heart rate variability. Frontiers in Psychiatry 2023;14 View
  32. Chen J, Liu L, Chang S, Lu C. Identifying the top determinants of psychological resilience among community older adults during COVID-19 in Taiwan: A random forest approach. Machine Learning with Applications 2023;14:100494 View
  33. Lilhore U, Dalal S, Faujdar N, Simaiya S, Dahiya M, Tomar S, Hashmi A. Unveiling the prevalence and risk factors of early stage postpartum depression: a hybrid deep learning approach. Multimedia Tools and Applications 2024;83(26):68281 View
  34. Choi J, Kim K, Park S, Hur J, Yang H, Kim Y, Lee H, Han S. Investigation of factors regarding the effects of COVID-19 pandemic on college students’ depression by quantum annealer. Scientific Reports 2024;14(1) View
  35. Heyat M, Akhtar F, Munir F, Sultana A, Muaad A, Gul I, Sawan M, Asghar W, Iqbal S, Baig A, de la Torre Díez I, Wu K. Unravelling the complexities of depression with medical intelligence: exploring the interplay of genetics, hormones, and brain function. Complex & Intelligent Systems 2024;10(4):5883 View
  36. Razavi M, Ziyadidegan S, Mahmoudzadeh A, Kazeminasab S, Baharlouei E, Janfaza V, Jahromi R, Sasangohar F. Machine Learning, Deep Learning, and Data Preprocessing Techniques for Detecting, Predicting, and Monitoring Stress and Stress-Related Mental Disorders: Scoping Review. JMIR Mental Health 2024;11:e53714 View
  37. Sadjadpour F, Hosseinichimeh N, Abedi V, Soghier L. Comparative analysis of machine learning versus traditional method for early detection of parental depression symptoms in the NICU. Frontiers in Public Health 2024;12 View
  38. Huang Y, Alvernaz S, Kim S, Maki P, Dai Y, Peñalver Bernabé B. Predicting Prenatal Depression and Assessing Model Bias Using Machine Learning Models. Biological Psychiatry Global Open Science 2024;4(6):100376 View
  39. Hsu F, Chen H, Wang K, Ling W, Chen N. Application of time series analysis in predicting postpartum depression: integrating data from the hospitalization period and early postpartum weeks. Archives of Women's Mental Health 2024 View
  40. Shivaprasad S, Chadaga K, Sampathila N, Prabhu S, Chadaga P R, K S S. Explainable machine learning methods to predict postpartum depression risk. Systems Science & Control Engineering 2024;12(1) View
  41. Wong E, Saini A, Accortt E, Wong M, Moore J, Bright T. Evaluating Bias-Mitigated Predictive Models of Perinatal Mood and Anxiety Disorders. JAMA Network Open 2024;7(12):e2438152 View

Books/Policy Documents

  1. Belciug S, Iliescu D. Pregnancy with Artificial Intelligence. View
  2. Raisa J, Kaiser M, Mahmud M. Brain Informatics. View
  3. Miranda E, Kumbangsila M, Aryuni M, Richard , Zakiyyah A, Sano A. Proceeding of the 3rd International Conference on Electronics, Biomedical Engineering, and Health Informatics. View
  4. Priyanka , Goyal S, Bhatia R. Communication and Intelligent Systems. View