Published on in Vol 10, No 3 (2022): March
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/32508, first published
.
Journals
- Chung C, Su E, Chen J, Chen Y, Kuo C. XGBoost-Based Simple Three-Item Model Accurately Predicts Outcomes of Acute Ischemic Stroke. Diagnostics 2023;13(5):842 View
- Loh H, Ooi C, Seoni S, Barua P, Molinari F, Acharya U. Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Computer Methods and Programs in Biomedicine 2022;226:107161 View
- Lai H, Kuo E, Li R, Chuang T, Huang Y, Hsieh J, Chang T, Huang Y, Hsieh W, Su Y, Liu M. Using an Interpretable Machine Learning Model to Predict Corifollitropin Alfa Protocol. Fertility & Reproduction 2023;05(01):50 View
- Chen M, Qian D, Wang Y, An J, Meng K, Xu S, Liu S, Sun M, Li M, Pang C. Systematic Review of Machine Learning Applied to the Secondary Prevention of Ischemic Stroke. Journal of Medical Systems 2024;48(1) View
- Gebeye L, Dessie E, Yimam J. Predictors of micronutrient deficiency among children aged 6–23 months in Ethiopia: a machine learning approach. Frontiers in Nutrition 2024;10 View
- Ong K, Kwon T, Jang H, Kim M, Lee C, Byeon S, Kim S, Yeo J, Choi E. Multitask Deep Learning for Joint Detection of Necrotizing Viral and Noninfectious Retinitis From Common Blood and Serology Test Data. Investigative Opthalmology & Visual Science 2024;65(2):5 View
- Papadopoulou A, Harding D, Slabaugh G, Marouli E, Deloukas P. Prediction of atrial fibrillation and stroke using machine learning models in UK Biobank. Heliyon 2024;10(7):e28034 View
- Nithya R, Kokilavani T, Beena T. Balancing cerebrovascular disease data with integrated ensemble learning and SVM-SMOTE. Network Modeling Analysis in Health Informatics and Bioinformatics 2024;13(1) View
- Huang Q, Shou G, Shi B, Li M, Zhang S, Han M, Hu F. Machine learning is an effective method to predict the 3-month prognosis of patients with acute ischemic stroke. Frontiers in Neurology 2024;15 View
- Pucar Đ, Šimović V. Predictive modeling of stroke occurrence using Python for improved risk assessment. Journal of Process Management and New Technologies 2024;12(1-2):110 View
- Vu T, Kokubo Y, Inoue M, Yamamoto M, Mohsen A, Martin-Morales A, Inoué T, Dawadi R, Araki M. Machine Learning Approaches for Stroke Risk Prediction: Findings from the Suita Study. Journal of Cardiovascular Development and Disease 2024;11(7):207 View
- Cai G, Xu J, Zhang C, Jiang J, Chen G, Chen J, Liu Q, Xu G, Lan Y. Identifying biomarkers related to motor function in chronic stroke: A fNIRS and TMS study. CNS Neuroscience & Therapeutics 2024;30(7) View
- Horváth L, Zsemla G. A neurovascularis és mentális betegségek regisztereinek integrált rendszere. Orvosi Hetilap 2024;165(24-25):955 View
- Rodríguez Mallma M, Zuloaga-Rotta L, Borja-Rosales R, Rodríguez Mallma J, Vilca-Aguilar M, Salas-Ojeda M, Mauricio D. Explainable Machine Learning Models for Brain Diseases: Insights from a Systematic Review. Neurology International 2024;16(6):1285 View
- Sorayaie Azar A, Samimi T, Tavassoli G, Naemi A, Rahimi B, Hadianfard Z, Wiil U, Nazarbaghi S, Bagherzadeh Mohasefi J, Lotfnezhad Afshar H. Predicting stroke severity of patients using interpretable machine learning algorithms. European Journal of Medical Research 2024;29(1) View