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Abstract

Background: Timely and accurate outcome prediction plays a vital role in guiding clinical decisions on acute ischemic stroke.
Early condition deterioration and severity after the acute stage are determinants for long-term outcomes. Therefore, predicting
early outcomes is crucial in acute stroke management. However, interpreting the predictions and transforming them into clinically
explainable concepts are as important as the predictions themselves.

Objective: This work focused on machine learning model analysis in predicting the early outcomes of ischemic stroke and used
model explanation skills in interpreting the results.

Methods: Acute ischemic stroke patients registered on the Stroke Registry of the Chang Gung Healthcare System (SRICHS)
in 2009 were enrolled for machine learning predictions of the two primary outcomes: modified Rankin Scale (mRS) at hospital
discharge and in-hospital deterioration. We compared 4 machine learning models, namely support vector machine (SVM), random
forest (RF), light gradient boosting machine (LGBM), and deep neural network (DNN), with the area under the curve (AUC) of
the receiver operating characteristic curve. Further, 3 resampling methods, random under sampling (RUS), random over sampling,
and the synthetic minority over-sampling technique, dealt with the imbalanced data. The models were explained based on the
ranking of feature importance and the SHapley Additive exPlanations (SHAP).

Results: RF performed well in both outcomes (discharge mRS: mean AUC 0.829, SD 0.018; in-hospital deterioration: mean
AUC 0.710, SD 0.023 on original data and 0.728, SD 0.036 on resampled data with RUS for imbalanced data). In addition, DNN
outperformed other models in predicting in-hospital deterioration on data without resampling (mean AUC 0.732, SD 0.064). In
general, resampling contributed to the limited improvement of model performance in predicting in-hospital deterioration using
imbalanced data. The features obtained from the National Institutes of Health Stroke Scale (NIHSS), white blood cell differential
counts, and age were the key features for predicting discharge mRS. In contrast, the NIHSS total score, initial blood pressure,
having diabetes mellitus, and features from hemograms were the most important features in predicting in-hospital deterioration.
The SHAP summary described the impacts of the feature values on each outcome prediction.

Conclusions: Machine learning models are feasible in predicting early stroke outcomes. An enriched feature bank could improve
model performance. Initial neurological levels and age determined the activity independence at hospital discharge. In addition,

JMIR Med Inform 2022 | vol. 10 | iss. 3 | e32508 | p. 1https://medinform.jmir.org/2022/3/e32508
(page number not for citation purposes)

Su et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:hywei@ntu.edu.tw
http://www.w3.org/Style/XSL
http://www.renderx.com/


physiological and laboratory surveillance aided in predicting in-hospital deterioration. The use of the SHAP explanatory method
successfully transformed machine learning predictions into clinically meaningful results.

(JMIR Med Inform 2022;10(3):e32508) doi: 10.2196/32508
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Introduction

Cerebrovascular disease ranks as the second leading cause of
death in the United States and the third cause of
disability-adjusted life years (DALYs) globally in 2010 [1].
Ischemic stroke shows higher incidence and prevalence than
hemorrhagic stroke. Ischemic stroke survivors commonly have
disabilities and substantial function loss that significantly affect
their quality of life. Outcome prediction provides a reference
for doctors to select rehabilitation strategies and provides
patients with decent expectations in the future [2,3]. Several
studies have focused on stroke prediction by indicators collected
at emergency room (ER) or first at ward admissions [4,5]. In
the past, scores such as the Acute Stroke Registry and Analysis
of Lausanne (ASTRAL), DRAGON, and SEDAN were used
for stroke outcome prediction and proved more accurate than
physicians [6]. Over the past few years, most research on stroke
prediction has emphasized the use of machine learning, which
achieves better performance in predicting stroke outcomes [7].
Recent studies on stroke prediction can be classified into three
categories: studies investigating longitudinal data such as health
insurance databases for predicting the probability of stroke
occurrence, studies predicting recovery in a specific time using
numerical data, and studies applying novel machine learning
models such as computer vision models [8] or natural language
processing models for more accurate diagnosis [9,10].

This work aimed to predict early outcomes using numerical
data and applying novel machine learning models, including
neural networks and gradient boosting machines for predictions.
The specific goals were to predict the modified Rankin Scale
(mRS) score at hospital discharge and deterioration during
admission. We focused on model performance comparison,
ranking of feature importance, and explanation of model
predictions. We leveraged the SHapley Additive exPlanations
(SHAP) to depict the stroke prediction models and guarantee
that the models predict with a solid basis. For imbalanced
prediction targets, preprocessing was performed with different
resampling methods to balance the data set before model
performance comparisons.

Methods

Database
Patient data were collected from January 1 to December 31,
2009, by the Stroke Registry in Chang Gung Healthcare System
(SRICHS) [11]. SRICHS is a stroke registry system that
prospectively collected patients’ clinical information with the
ICD 9 diagnostic code 430-437 for acute ischemic and
hemorrhagic stroke since 2007. The registry data were

anonymized and deidentified before analysis. The data
automatically downloaded from the hospital information system
included demographic information, laboratory tests, examination
reports, and structured information from the electronic medical
chart. The data cleaning process included 2 steps. First, the data
without the initial blood pressure recordings at admission, mRS
at ward admission and discharge, and laboratory hemograms
were removed. Second, the data with out-of-range scores on the
National Institutes of Health Stroke Scale (NIHSS) were
removed, which were attributed to misrecording. The
Institutional Review Board of Chang Gung Memorial Hospital
approved this study (no. 103-1519C, no. 201900732B0, and no.
201801763A3).

Outcome Measurements
The primary target variable was the mRS at discharge [12]. To
turn the prediction issue into a binary classification problem
and compare our results directly with the existing methods, we
discretized the mRS into two classes: good outcomes defined
by mRS 0-2 and poor outcomes defined by mRS≥3.

The other primary outcome was in-hospital deterioration. The
coding for deterioration included clinical condition worsening
due to brain herniation, hemorrhagic transformation,
neurological deterioration defined by an increase of 4 points or
more in the NIHSS score compared to the admission score, and
clinical deterioration due to medical problems. When there were
specific causes for increases in the NIHSS scores by 4 points
or more, such as brain herniation or hemorrhagic transformation,
the patients were coded for these reasons; otherwise, we coded
them for neurological deterioration. If mortality or critical
conditions occurred owing to medical complications, we
assigned them the code of in-hospital deterioration due to
medical problems.

Features in the Models
The following categories of features were included in the
models: (1) demographic features: age, sex, smoking habit,
alcohol consumption, height, weight, and BMI; (2) medical
comorbidities: a history of previous stroke, ischemic heart
disease, congestive heart failure, atrial fibrillation, diabetes
mellitus (DM), hypertension, and hyperlipidemia; (3)
stroke-related index: NIHSS total score and subscores at ER
and ward admission and stroke onset-to-hospitalization interval;
(4) initial physiological parameters at admission: initial systolic
blood pressure (SBP) and diastolic blood pressure, heart rate,
respiratory rate, and body temperature; (5) initial laboratory
parameters of blood tests: hemogram including the white blood
cell (WBC) count and its differential counts, red blood cell
(RBC) count, hemoglobin, hematocrit and platelet counts,
prothrombin time (PT), activated partial thromboplastin time,
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cholesterol and triglyceride profile, aspartate aminotransferase,
alanine transaminase, blood urea nitrogen, creatinine, glucose,
glycosylated hemoglobin, C-reactive protein, erythrocyte
sedimentation rate, and homocysteine; (6) data of urine tests,
including urine total protein and glucose levels.

Data Visualization
Unsupervised clustering provided an explicit grouping of the
data, and direct visualization of the clusters showed the natural
distribution of data. The t-distributed stochastic neighbor
embedding (t-SNE) is a nonlinear dimensionality reduction for
visualization [13]. Let P be the joint probability distribution for
high dimension, and Q for low dimension. The distance between
the 2 similarity matrices could be expressed as:

A gradient descent was performed to minimize this score, and
the gradient could be computed as:

Machine Learning Models

Support Vector Machine (SVM)
The SVM was used to construct a hyperplane to split the data
into 2 classes and optimize the distance between all data points
and the hyperplane [14]. For a set of {xi, yi}, i = 1, …, N, xi ∈
Rdyi ∈ {+1, –1}, the SVM found a vector ω such that yi (ωTxi

– b) > 0. The vector split the data into 2 classes. Many lines
were available for splitting the set. The SVM optimized the
solution by solving:

And retrieved the solution from:

Random Forest (RF)
The RF algorithm was based on bagging and decision [15].
Bootstrap aggregating (bagging) used repeated random sampling
and replaced the training set to create a subset, reduce variance,
and improve accuracy. Each subset of the training set conducted
a random selection with features. The aggregation combined
all predictions and yielded the regression mean and classification
mode.

Light Gradient Boosting Machine (LGBM)
LGBM is a gradient boosting framework using tree-based
learning algorithms [16]. In LGBM, gradient-based one-side
sampling (GOSS) and exclusive feature bundling (EFB) were
the 2 main techniques to improve efficiency and scalability.
GOSS kept those data with large gradients and randomly
dropped those with small gradients and reduced the calculation
cost. EFB bundled exclusive features to reduce feature
dimensions. The feature bundles could improve training
efficiency without losing accuracy.

Deep Neural Network (DNN)
The DNN model was trained with tuned parameters in neurons
by adjusting their weights and bias values to make the model’s
output closer to the ground truth [17]. If we set θ as all the
parameters of the model and the input as x passing the neural
network, F(θ), the output layer would generate the corresponding
F(x, θ) = yˆ. The embedding layer turned positive integers
(indexes) into fixed-size vectors. The technique could avoid the
sparse matrix obtained during the transformation of
high-dimensional data into lower-dimensional data and turned
categorical data into one-hot encoding data. In the DNN, the
gradient descent algorithm solved the optimization problem by
calculating the gradient of the loss function, updating the model's
parameters in the opposite direction, and minimizing the loss.
By selecting an optimal learning rate, a local minimum would
be reached by iterations. Additional methods to optimize the
model included batch normalization, which normalized the
means and variances of each layer’s inputs [18]. Dropout
avoided overfitting by randomly omitting a certain fraction of
neurons on each training case [19].

Data Processing
We applied a min-max normalizer to the numerical data for data
engineering, split the data into 5 folds, and performed 5-fold
cross-validation for performance evaluation. Cross-validation
is a suitable approach to estimate the performance of a model
when the data set is small. During the process of 5-fold
cross-validation, the data set was first divided into 5 groups;
then, each group was used as an unseen testing set in turn,
whereas the remainder of the data set served as the training set
( Figure 1). Notably, for DNN and LGBM, 10% of the training
set was used as the validation set (tuning set) to prevent the
overfitting problem and ensure that the model is trained well.
Finally, the mean and SD of the testing accuracy in 5 rounds
were evaluated as performance metrics.
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Figure 1. Data enrollment. After the initial enrollment of 3589 patients, data cleaning excluded 809 patients and left 2780 eligible patients. The enrolled
data set underwent k-fold cross-validation. In 5 folds, the data set was randomly divided such that 80% was for training and 20% for testing in each
fold. The results of cross-validation underwent performance comparison with the ground truth and are expressed as the area under the curve of the
receiver operating characteristic curve. mRS: modified Rankin Scale; NIHSS: National Institutes of Health Stroke Scale.

Transformation of the multiclassification model to a binary
model was performed to improve model performance. After
training the RF and LGBM multiclassifiers, the output summed
up the mRS outcome {0,1,2} as False, and mRS outcome
{3,4,5,6} as True.

Between-model comparison was conducted to rate the SVM,
RF, LGBM, and DNN. Model performance in terms of the
prediction ability was evaluated using the average area under
the curve (AUC) of the receiver operating characteristic (ROC)
curve; clear interpretations of true positives and false positives
were essential for the classification problem.

Imbalanced Data
To handle imbalanced outcomes, 3 resampling methods were
applied to make the 2 outcome classes more balanced. First,
random under sampling (RUS) randomly dropped data from
the majority class and often led to missing critical data. Second,
random over sampling (ROS) randomly duplicated data of the
minority class but sometimes led to overfitting of the minor
samples. The third resampling method was the synthetic
minority over-sampling technique (SMOTE) [20], which
synthesized data from the minority class. The synthetic sample

x is a point along the line segment joining xi and xi, where x0
i

= xi + (xˆi − xi) × δ and the random number δ ∈ (0,1). The
synthetic minority over-sampling technique-nominal continuous
(SMOTE-NC) technique is the advanced modification of
SMOTE and capable of handling mixed data sets of continuous
and nominal features. The SMOTE-NC ran median

computations for nominal features and nearest neighbor
computations for mixed data. The algorithm gave those nominal
features the value occurring in most k-nearest neighbors.

Interpretation of Models
The SHAP, inspired by the Shapley value in game theory,
assigned each feature a value of importance for a particular
prediction [21]. The SHAP summary used kernel SHAP to
estimate the Shapley value and visualized the prediction
distribution among the feature values. For example, when
approximating the original model f for a specific input x, local
accuracy required the explanation model to match the output
off for the simplified input x′ that corresponded to the original
input x:

Data Availability
Anonymized data not published within this article will be made
available on request from any qualified investigator under the
regulations of our institutional review board.

Results

Data Enrollment
Initial screening identified 3589 patients of admission due to
acute ischemic stroke. The data cleaning steps excluded 679
patients for missing records of blood pressure, mRS, and
hemograms. Another 130 patients were excluded for mislabeled
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NIHSS scores. The missing rate of all the features was under
10%. A total of 2780 eligible patients were enrolled. The data
underwent 5-fold cross-validation. In each fold, the models
randomly divided the whole data set into 80% data for training
and 20% data for testing. The performance in each fold was
compared with the ground truth and quantified in the AUC of
ROC curves. The final AUC results were the means and SDs
obtained from the 5-fold cross-validation (Figure 1).

Prediction of mRS at Hospital Discharge
The t-SNE was used for unsupervised clustering to visualize
the data. Of the entire data set containing 2780 cases, the 1284
orange dots for a bad outcome and the 1571 blue dots for a good
outcome overlapped to a certain degree (Figure 2A). The t-SNE
results showed the relationship between the bad and good
outcomes at the feature stage, but this does not mean that the
machine learning models could not separate the mixed data.

Figure 2. Prediction of modified Rankin Scale (mRS) at hospital discharge. The outcome variable mRS at discharge was transformed from 6 ordinal
classes to a binary class. The good outcome was defined by mRS {0,1,2}, whereas the bad outcome was indicated by mRS {3,4,5,6}. (A) The t-SNE
graph shows the distribution of the data. Orange indicates discharge mRS 3-6 and blue represents mRS 0-2. (B) ROC curves for 4 machine learning
models. (C) Comparisons of AUC between the data with and without normalization of numerical features. (D) AUC for different amounts of data. AUC:
area under the curve; DNN: deep neural network; LGBM; light gradient boosting machine; mRS: modified Rankin Scale; RF: random forest; ROC:
receiver operating characteristic; SVM: support vector machine; t-SNE: t-distributed stochastic neighbor embedding.

Figure 2B shows the ROC curve for comparing model
performances using normalized data. The overlapping curves
indicate that the models performed equally well with the AUC
being approximately 0.8, with no model being significantly
superior to the others. Normalization of the numerical data
improved the performance of the SVM model because of its
linear nature, but normalization was not beneficial for the tree
models and DNN (Figure 2C). We further simulated different
volumes of data by sampling different fractions (0.01, 0.02,
0.05, 0.1, 0.2, and 0.5) of data from the entire training data set,
conducted the 5-fold cross-validation, and determined the
performance at each data volume (Figure 2D). On increasing
the training data to more than 500 samples, the model
performance reached a plateau, with the average AUC for RF

being near 0.8, almost as high as that for the entire data. With
more data, the performance of all the 4 models improved. In
contrast, with limited data, the performance would also be
acceptable.

We further applied feature importance and compared it with
SHAP in terms of the summary aspect. The top 5 features in
RF and LGBM were similar in terms of the NIHSS total score,
age, WBC differential counts of lymphocyte and segmented
neutrophil, and renal function creatinine (Figure 3A). On the
other hand, the SHAP summary of the RF and LGBM models
presented the ranking of important features and their influence
on predicting outcomes (Figures 3B-3C). For example, the
SHAP summary suggested higher NIHSS total scores, worse
lower limb motor function, older age, higher segmented
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neutrophil, and lower lymphocyte percentage of WBC
differential counts, indicating a higher mRS score for more

dependency at hospital discharge.

Figure 3. Feature importance for predicting modified Rankin Scale at hospital discharge. (A) Top 5 important features of random forest and light
gradient boosting machine. SHapley Additive exPlanations of (B) random forest and (C) light gradient boosting machine. Red indicates higher feature
sample values, and blue indicates lower feature sample values. For example, the higher the total National Institutes of Health Stroke Scale scores at
emergency room and at ward admission, the more severe would be the stroke outcome. ALT: alanine transaminase; APTT: activated partial thromboplastin
time; DM: diabetes mellitus; ER: emergency room; LGBM: light gradient boosting machine; LOC: level of consciousness; NIHSS: National Institutes
of Health Stroke Scale; RF: random forest; SHAP: SHapley Additive exPlanations. Wd: ward.

Prediction of In-Hospital Deterioration
Of the initial cohort of 2780 patients, 2622 (94%) were
nondeterioration and 158 (6%) were deterioration cases. The
coding ratio of in-hospital neurological deterioration, medical
problems, brain herniation, and hemorrhagic transformation
was 0.64:0.18:0.14:0.04. Next, we compared the performances
of the 4 models in predicting deterioration and the 4 resampling

methods for imbalanced data. Finally, we compared the feature
importance.

The sample grouped and visualized by t-SNE showed that
deteriorations were the minority surrounded by nondeterioration
samples (Figure 4A). The resampling methods RUS and ROS
did not group samples well (Figures 4B-4C). Finally, the
SMOTE-NC produced synthetic data in the neighborhood of
true data, but the data were still not grouped well (Figure 4D).
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Figure 4. Prediction of in-hospital deterioration. (A) Visualization by t-distributed stochastic neighbor embedding of the original sample shows an
imbalanced outcome. The 3 resampling methods processed the imbalanced data with (B) random under sampling decreasing the majority class, (C)
random over sampling increasing the minority class, and (D) synthetic minority over-sampling technique with nominal continuous data synthesis from
the minority class. (E) Receiver operating characteristic curves for predicting in-hospital deterioration from the data without resampling. (F) Comparison
of the area under the curve in the different resampling methods. Random under sampling was a reasonable choice for resampling. It improved the
performance of the random forest, light gradient boosting machine, and support vector machine models, but not the deep neural network. The deep
neural network performed better on the original data set than on the resampled data set. DNN: deep neural network; LGBM: light gradient boosting
machine; RF: random forest; ROC: receiver operating characteristic; ROS: random over sampling; RUS: random under sampling; SMOTE-NC: synthetic
minority over-sampling technique-nominal continuous; SVM: support vector machine.

The ROC curves showed the predictive performance for
in-hospital deterioration of different models. In the original data
set, RF and DNN outperformed SVM and LGBM (Figure 4E,
data without resampling). As for each resampling method, RUS
improved the performance of all the models except DNN (Figure
4F). The DNN model performed better on the original data set
than on resampled data. The performance of SVM was
significantly improved by RUS, ROS, and SMOTE-NC.

We further compared the top 5 important features with
nonresampling data (Figure 5A). The NIHSS total score was

critical for predicting in-hospital deterioration. In the SHAP
summary, we learned that the higher the NIHSS score, the higher
the risk of deterioration. Notably, the initial SBP was prominent
in the top 5 important features of RF and LGBM (Figure 5A)
and their SHAP summaries (Figures 5B-5C). The SHAP
summaries of RF and LGBM showed that the higher the initial
SBP, the higher the risk of in-hospital deterioration. In addition,
the features obtained from the blood test hemograms, including
WBC differential count, platelet count, PT, and RBC, appeared
in the top features. Having DM was also crucial in predisposing
in-hospital deterioration (Figures 5B-5C).
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Figure 5. Feature importance for predicting in-hospital deterioration (without resampling). (A) Top 5 important features include initial systolic blood
pressure at hospital admission in random forest and light gradient boosting machine. National Institutes of Health Stroke Scale total score at ward
admission is also an important feature in both models. SHapley Additive exPlanations of (B) random forest and of (C) light gradient boosting machine.
ALT: alanine transaminase; APTT: activated partial thromboplastin time; BUN: blood urea nitrogen; DBP: diastolic blood pressure; DM: diabetes
mellitus; ER: emergency room; HDL: high-density lipoprotein; LDL: low-density lipoprotein; NIHSS: National Institutes of Health Stroke Scale; PT:
prothrombin time; RBC: red blood cell; SBP: systolic blood pressure; WBC: white blood cell; Wd: ward.

Discussion

Summary
In this study, we used machine learning to predict the mRS
outcome at hospital discharge and in-hospital deterioration in
the setting of acute ischemic stroke. RF performed the best in
most tasks. Applying SHAP to the models combining numerical
and higher-dimensional features was feasible, and the SHAP
summary emphasized the importance of these features for
clinical explanations. As for the resampling of imbalanced data,
the effects of resampling on the performance improvement of
the models were only equivocal, and SMOTE-NC was not an
outstanding method.

Several studies compared models for stroke outcome prediction.
In a study with data of over 15,000 patients, DNN outperformed
traditional methods when predicting stroke patient mortality
[22]. The stroke outcomes predicted by DNN were superior to
the ASTRAL scores [23]. However, DNN made no difference
in another study predicting 3-month mRS [23]. In our study,
DNN did not excel in predicting the discharge mRS, but it
performed better than the other models when predicting
in-hospital deterioration using nonresampling data. Therefore,
DNN is a reasonable choice for the prediction of early
deterioration in acute ischemic stroke.

Gradient boosting machine (GBM) and RF are tree-based
machine learning models. In a comparative study, extreme
gradient boosting (XGBoost) performed better than the
traditional GBM in predicting 3-month mRS [24]. However,
another study has mentioned that RF performs the best when
compared to XGBoost and other traditional models, such as
logistic regression, decision tree, and SVM [25]. Similarly, we
found that RF performed well in targeting in-hospital
deterioration and predicting independence at discharge. RF is
effective with imbalanced data and therefore performs well in
medical issues with scarce outcomes [26]. RF is suitable for
predicting medical diagnosis, and feature ranking helps the RF
model in medical classification [27]. Therefore, using RF in
predicting early stroke outcomes was feasible. On the contrary,
SVM is the least suitable model for stroke early outcome
prediction.

Recent Progress in Model Interpretation
Interpreting how models predict outcomes is sometimes as
crucial as their accuracy. In recent years, there has been an
increasing amount of literature explaining machine learning
models, which helps investigate their learning mechanisms,
debug these models, avoid adversarial attacks, and verify the
fairness and bias of these models [28,29]. Tree models have
some simple inbuilt methods, such as counts for the features
used in the model. However, these methods lead to biased
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approaches, as they tend to inflate the importance of continuous
features or high-cardinality categorical variables. To solve the
black-box nature of complex models such as deep learning
models, the additive feature attribution methods alter the inputs
to see how the outputs react and provide a practical solution for
the models [30]. The local interpretable model-agnostic
explanation, introduced in 2016, approximates a black-box
model using a simple linear surrogate model locally [31,32].
Recent explainers, including the SHAP announced in 2018,
explore the model from a more global perspective. [21,32]. In
a study aiming to predict extubating failure in intensive care
units, SHAP analysis proved effective and accurate [33]. With
the help of SHAP, we determined the contribution of each
feature toward predicting stroke outcomes. The SHAP summary
distinguished the features that could separate targets and
nontargets from those features that could not.

When working with imbalanced data, SMOTE resampling often
achieves better performance in predicting stroke occurrence
[34]. However, investigating important features with synthetic
data maybe not be persuasive because of its nature of linear
interpolation. Repeatedly resampling categorical features could
lead to overfitting of the synthetic data. In contrast, continuous
features usually stood out without resampling. SMOTE-NC
resampling for the imbalanced data of in-hospital deterioration
could even worsen model performance. The reason may be the
overfitting of categorical data (Figure 4F).

Initial Blood Pressure in Predicting Early Outcomes
of Ischemic Stroke
This work followed the SRICHS registry study, which found
the associations between initial blood pressure and 1-year
outcomes [35]. In this work, the machine learning models RF
and LGBM identified high initial SBP as a crucial factor
influencing in-hospital deterioration. High SBP is a strong
predictor of stroke [36] and ranks the first among the stroke risk
factors contributing to stroke-related DALYs [37]. Chronic
hypertension is the most important modifiable risk factor of
stroke, according to the INTERSTROKE study [38]. Persistent
high blood pressure indicates a worse long-term stroke outcome
[39]. High initial blood pressure is detrimental to early
neurological outcomes and heralds the deterioration of
neurological function in the hospital [40]. Patients with high
blood pressure tended to encounter acute infarct volume
expansion [41]. Consistent with traditional statistics, our
machine learning models supported the importance of blood
pressure in predicting early deteriorations in terms of
neurological, pathophysiological, and medical changes of acute
ischemic stroke. During the creation of this data set,
endovascular therapy was not a standard treatment yet. Current
studies highlight the importance of blood pressure for stroke
patients receiving endovascular therapy [42]. Possessing the
capability to process complex data, our machine learning models
are promising tools to solve complicated problems in the new
era of stroke care, such as blood pressure problems in
endovascular therapy.

DM and Early Stroke Outcomes
DM is a known risk factor for stroke. It accelerates the
development of ischemic stroke at a younger age [43].

Compared to nondiabetic stroke patients, ischemic stroke
patients with DM had worse neurological deficits, less favorable
outcomes from rehabilitation, delayed recovery from the
stroke-related deficit, a longer hospital stay for acute ischemic
stroke, a higher probability of experiencing a recurrent stroke
within 1 year, and a higher rate of 1-year mortality [43,44]. In
our study, having DM was a strong predictor for in-hospital
deterioration in the SHAP summary of RF and LGBM. Other
studies also revealed that DM predisposed early neurological
deterioration [45] and increased mortality during hospital stay
[43]. This finding suggests that the explainable machine learning
model using the SHAP summary is as informative as the stroke
registry statistics.

Limitations of the Study
There were several limitations of this study. First, the
registry-based study might have inconsistent assessments and
treatments of the patients, incomplete data registration, missing
outcomes, and loss of follow-up data [46]. Because of the
potentially underreported data, the outcomes might be
underestimated. Still, tracking the natural history of a disease,
collecting a large number of patients, and yielding generalizable
findings make registry-based studies valuable in understanding
diseases and outcome assessments. Second, our machine
learning models predicted discharge mRS more accurately than
in-hospital deterioration. Because general condition deterioration
involves multiple factors and individual circumstances,
predicting it is more complicated than predicting the
neurological status at discharge, which could refer to the initial
neurological status. The attributes of the current study design
limited the quality and quantity of the features used in model
design. In future studies, prospectively collecting delicate
parameters, such as continuous vital sign recordings and
neuroimages, may improve the performance of these models
when predicting in-hospital deterioration. Third, the data set
we used in this study was collected in 2009. In the past 10 years,
the disease course of ischemic stroke may have changed due to
the popularity of comorbidities, demography of stroke
proneness, progress in stroke treatment, and improved poststroke
care. The machine learning models used in this study may not
be completely suitable for new data, and the models may need
to be retrained and adjusted. Nevertheless, novel therapies, such
as intravenous thrombolysis and endovascular thrombectomy,
for acute ischemic stroke were not prevalent a decade ago, and,
therefore, we could clearly understand the disease nature course
from this data analysis.

Conclusions
RF, an ensemble algorithm of regression and classification
containing multiple decision trees, outperformed SVM, LGBM,
and DNN in targeting early stroke outcomes of discharge mRS.
RF and DNN performed well in predicting in-hospital
deterioration. Using the SHAP summary and feature importance
ranking may help clinicians in explaining the prediction of the
machine learning models. The multidomain feature bank,
combining physiological monitoring values, laboratory data,
and neurological severities, as well as the improved performance
of the models helped predict in-hospital deterioration. These
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machine learning models are promising for advanced applications in stroke outcome prediction.
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