Published on in Vol 10, No 2 (2022): February

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/29978, first published .
Reduction of Platelet Outdating and Shortage by Forecasting Demand With Statistical Learning and Deep Neural Networks: Modeling Study

Reduction of Platelet Outdating and Shortage by Forecasting Demand With Statistical Learning and Deep Neural Networks: Modeling Study

Reduction of Platelet Outdating and Shortage by Forecasting Demand With Statistical Learning and Deep Neural Networks: Modeling Study

Journals

  1. Al-Mozain N, Arora S, Goel R, Pavenski K, So-Osman C. Patient blood management in adults and children: What have we achieved, and what still needs to be addressed?. Transfusion Clinique et Biologique 2023;30(3):355 View
  2. Evans H, Murphy M, Foy R, Dhiman P, Green L, Kotze A, von Neree L, Palmer A, Robinson S, Shah A, Tomini F, Trompeter S, Warnakulasuriya S, Wong W, Stanworth S. Harnessing the potential of data‐driven strategies to optimise transfusion practice. British Journal of Haematology 2024;204(1):74 View
  3. Li N, Pham T, Cheng C, McElfresh D, Metcalf R, Russell W, Birch R, Yurkovich J, Montemayor-Garcia C, Lane W, Tobian A, Roubinian N, Seheult J, Goel R. Blood Demand Forecasting and Supply Management: An Analytical Assessment of Key Studies Utilizing Novel Computational Techniques. Transfusion Medicine Reviews 2023;37(4):150768 View
  4. Maynard S, Farrington J, Alimam S, Evans H, Li K, Wong W, Stanworth S. Machine learning in transfusion medicine: A scoping review. Transfusion 2024;64(1):162 View
  5. Engelke M, Schmidt C, Baldini G, Parmar V, Hosch R, Borys K, Koitka S, Turki A, Haubold J, Horn P, Nensa F. Optimizing platelet transfusion through a personalized deep learning risk assessment system for demand management. Blood 2023;142(26):2315 View
  6. Chideme C, Chikobvu D, Makoni T. The Impact of Age Group in Hierarchical Forecasting of Monthly Blood Donations in Zimbabwe. Risk Management and Healthcare Policy 2024;Volume 17:311 View
  7. Pérez‐Aliaga A, Ayerra I, Sánchez‐Guillén J, López F, Puente F, Aranda A, Domingo J, Garcés C. Routine results of an algorithm for managing the production of blood components. Vox Sanguinis 2024;119(6):541 View
  8. Miri-Moghaddam E, Bizhaem S, Moezzifar Z, Salmani F. Long-term prediction of Iranian blood product supply using LSTM: a 5-year forecast. BMC Medical Informatics and Decision Making 2024;24(1) View
  9. Raymond C, Atchison A, Kavuri S, Elder C, Lick S, Guerra D, Halls J, Cheney S, Zahner C, Kruse R. Use of Low-Dose Platelets in Actively Bleeding Patients : A Retrospective Analysis of a Cardiac Surgery Cohort. Archives of Pathology & Laboratory Medicine 2025;149(5):476 View
  10. Yao L, Chen Q, Yang K, Zheng Z, Chen Z, Wang D, Xia Y, Chen D, Chen L. Novel insight into prediction model for sleep quality among college students: a LASSO-derived sleep evaluation. Frontiers in Psychiatry 2025;16 View
  11. Wang Y, Zhang L, Ma N, Wang Y. Platelet Transfusion for Patients with Cancer: An Update. Transfusion Medicine and Hemotherapy 2025:1 View

Books/Policy Documents

  1. Zhu Y, Spreckelsen C, Schilling M, Potluri S. Artificial Intelligence in Healthcare. View