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Abstract

Background: Platelets are a valuable and perishable blood product. Managing platelet inventory is a demanding task because
of short shelf lives and high variation in daily platelet use patterns. Predicting platelet demand is a promising step toward avoiding
obsolescence and shortages and ensuring optimal care.

Objective: The aim of this study is to forecast platelet demand for a given hospital using both a statistical model and a deep
neural network. In addition, we aim to calculate the possible reduction in waste and shortage of platelets using said predictions
in a retrospective simulation of the platelet inventory.

Methods: Predictions of daily platelet demand were made by a least absolute shrinkage and selection operator (LASSO) model
and a recurrent neural network (RNN) with long short-term memory (LSTM). Both models used the same set of 81 clinical
features. Predictions were passed to a simulation of the blood inventory to calculate the possible reduction in waste and shortage
as compared with historical data.

Results: From January 1, 2008, to December 31, 2018, the waste and shortage rates for platelets were 10.1% and 6.5%,
respectively. In simulations of platelet inventory, waste could be lowered to 4.9% with the LASSO and 5% with the RNN, whereas
shortages were 2.1% and 1.7% with the LASSO and RNN, respectively. Daily predictions of platelet demand for the next 2 days
had mean absolute percent errors of 25.5% (95% CI 24.6%-26.6%) with the LASSO and 26.3% (95% CI 25.3%-27.4%) with the
LSTM (P=.01). Predictions for the next 4 days had mean absolute percent errors of 18.1% (95% CI 17.6%-18.6%) with the
LASSO and 19.2% (95% CI 18.6%-19.8%) with the LSTM (P<.001).

Conclusions: Both models allow for predictions of platelet demand with similar and sufficient accuracy to significantly reduce
waste and shortage in a retrospective simulation study. The possible improvements in platelet inventory management are roughly
equivalent to US $250,000 per year.

(JMIR Med Inform 2022;10(2):e29978) doi: 10.2196/29978
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Introduction

Background
For blood centers, it is key to keep a balance between shortage
and outdating of blood products to secure both cost efficiency
and sufficient care for patients. This is especially true for
short-lived blood products such as platelets. Forecasting demand
has recently gained fresh attention as a way to address the
problem, and the rise of big data and artificial intelligence in
recent decades suggests new opportunities in this task [1,2].

Platelet transfusion is an indispensable part of modern medicine
[3]. It is used prophylactically to reduce the risk of bleeding or
therapeutically to manage active bleeding [3]. Most platelets
are transfused to hematology and oncology patients, followed
by patients undergoing severe surgical treatment [3-5]. In recent
decades, a rise in platelet demand has been reported repeatedly
[3,6-8].

As with other blood products, platelets need to be readily
available at all times as demand might occur on short notice
without obvious foreboding and timely transfusion is often
critical [5]. Therefore, most blood centers try to store ample
amounts of platelets and other blood products. However, the
supply is limited by the number of donations.

Keeping sufficient stock is especially difficult with platelets
because of their short shelf life of 5-7 days, including time for
preparation and quality control [9]. A large stock may lead to
large amounts of wastage because of outdating, whereas a
slender stock increases the risk of shortages [10,11]. Platelet
outdating rates are the highest of all blood products and are
typically reported at 10% to 20% [6,11].

In a recent systematic review, Flint et al [11] provided a detailed
overview of existing methods to reduce platelet outdating, one
of which was forecasting platelet demand. By forecasting
demand, production can be adjusted accordingly to reduce both
outdating and shortage. It has been stated that prediction and
modeling will have increasingly important roles in managing
blood inventory [12]. However, to this day, there are very few
scientifically published approaches to forecasting platelet
demand [11].

Several authors have investigated different univariate time series
models to predict platelet demand, including moving averages,
weighted moving averages, exponential smoothing, Winters
models, and autoregressive moving averages (ARIMA)
[10,13-15]. Fanoodi et al [14] reported improved prediction
when using univariate time series modeling by means of an
artificial neural network (ANN) compared with an ARIMA
model.

More recent studies have included additional clinical data as
predictors in multivariate models [1,2,16]. Khaldi et al [16]
predicted the monthly demand of platelets, red blood cells, and
plasma by means of a multivariate ANN with a total of 10
features, including census data, number of traffic accidents per
day, and clinical events such as hemorrhage and deliveries at
risk. They reported better prediction accuracy for the ANN
compared with a univariate ARIMA model.

Guan et al [1] presented the first big data approach to predict
platelet demand for the next 3 days and minimize wastage at
the Stanford Blood Centre. The authors used 43 features,
including hospital census data, complete blood count,
day-of-the-week status, and average daily transfusions over the
previous 7 days to predict platelet demand [1]. They included
the predictions in a linear optimization problem similar to the
least absolute shrinkage and selection operator (LASSO) method
that also accounted for the structure of the platelet inventory
and testing procedure at Stanford Blood Centre to directly
minimize wastage [1]. Comparing their findings with
retrospective data over 29 consecutive months, Guan et al [1]
found that the introduction of such a model in their institution
could lower outdating from 10.3% to 3.2% with no shortages.

During the course of this study, Motamedi et al [2] published
a study comparing multiple univariate and multivariate models
to predict daily platelet demand at Canadian Blood Services:
ARIMA, Prophet, LASSO, and a long short-term memory
(LSTM) network. They compared the models in terms of
prediction errors measured by root mean squared error (RMSE)
and mean absolute percent error (MAPE) with 2 and 8 years of
training data. The multivariate models (LASSO and LSTM)
consistently outperformed univariate time series (ARIMA and
Prophet), especially on the shorter training sets. The LASSO
performed best, with the LSTM being marginally worse. For
the multivariate models, the authors included hospital census
data, complete blood count, day-of-the-week status, average
transfusions over the previous 7 days, and number of
transfusions on the previous day as possible predictors. The
features for both the LASSO and the LSTM were selected by
the LASSO.

According to the current state of the art, LASSO and LSTM
networks seem to be very promising models for the prediction
of platelet demand. However, the accuracy of any prediction
model may vary between different sites because of the amount
and quality of the available data. Furthermore, it is unclear how
accurate a prediction needs to be to enable an actual reduction
in waste and shortage. This may also vary between sites
supposedly because of differences in their respective blood
inventories, such as shelf life of platelets, average daily
transfusion volume, production and quality control practices,
or availability of donations.

Objective
Therefore, the aims of this study are 2-fold: the first aim is to
predict daily platelet demand at the RWTH Aachen University
Hospital (UKA) using both a LASSO and an LSTM network.
The second aim is to design a simulation model of the blood
inventory at UKA, establish an ordering strategy based on the
predictions, and quantify possible reductions in waste and
shortage rates as compared with retrospective data. To the best
of our knowledge, this is the first study to compare these 2
models in terms of both prediction accuracy and possible
reduction in waste and shortage rates based on prediction-driven
simulations.
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Methods

General Approach
According to the aims of this study, our approach was 2-fold
(Figure 1). First, we used retrospective data from the UKA
electronic health record (EHR) to build 2 separate prediction

models for platelet demand: a LASSO model and a deep learning
recurrent neural network (RNN) with an LSTM layer. Second,
we designed a simulation model of our blood bank inventory.
Combining both parts, forecasts of platelet demand were passed
to the blood bank inventory to prematurely adjust platelet
production and calculate the resulting expiration and shortage
rates in a retrospective simulation study.

Figure 1. General approach: input data are fed to 2 separate prediction models—least absolute shrinkage and selection operator and recurrent neural
network. Predictions of platelet demand are passed to a simulation model of the blood bank inventory. Possible reductions in waste and shortage rates
are calculated in comparison with retrospective data. BBI: blood bank inventory; LASSO: least absolute shrinkage and selection operator; RNN: recurrent
neural network.

Data Acquisition
All data were sourced from the UKA EHR. No personal patient
data were used. The local ethics committee approved the data
acquisition and analysis (code EK282/19). For the period from
January 1, 2008, to December 31, 2018, we obtained data in
three categories: (1) platelet ingoings and outgoings as recorded
by the transfusion department; (2) census data for all wards,
outpatient clinics, and operation rooms; and (3) complete blood
count.

Data Cleaning and Preparation
Data were obtained as a daily time series and aggregated in a
single database. Platelet ingoings and outgoings were grouped
by source (in-house production and purchase) and disposition
(use, waste, sales, and quality control) and documented as
platelet units per day. Census data were documented as patients
per day grouped by inpatient clinics, outpatient clinics, surgeries,
and planned surgeries for the next day and subgrouped by
department. Complete blood count data other than platelet count
were documented as the number of measurements out of the

norm per day. Platelet count was recorded as the number of
measurements per day within specific intervals with regard to
platelet transfusion guidelines: <5/nL, 5-10/nL, 10-20/nL,
20-50/nL, 50-70/nL, 70-100/nL, and 100-150/nL [17-20].

Within the UKA EHR, zeroes (eg, no platelets transfused on a
given day) are not documented and are represented as missing
values. Therefore, we used zeroes to represent the missing values
rather than applying imputation. The only exception is census
data, where a missing value might indicate that the given
department did not exist at that point. Therefore, all departments
that did not continually exist throughout the examined 10-year
period were excluded. All census data with <400 nonzero values
were excluded as it was assumed that these time series did not
contain significant information. During the initial inspection of
the data, we found that a considerable amount of platelet traffic
data was mislabeled in terms of disposition. Over the years,
changing collaborations with other clinics and local practices
as well as a change in the inventory software have resulted in
inconsistent data labeling. A particular problem here was the
units that were given to partner clinics but labeled as used
in-house rather than sold. Therefore, all platelet traffic data were
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systematically verified for correct labeling. Mislabeled data
were corrected if possible and excluded otherwise. Less than
1% (305/46,205, 0.66%) of the total transfusion records were
excluded because of this problem. The entire data set is provided
in Multimedia Appendix 1.

Included Predictors
All features from the census and complete blood count data

with a correlation of r2≥0.2 to platelet use were included as
predictors in the prediction models. Previous studies have shown
that platelet transfusion shows a strong pattern of autocorrelation
and is dependent on the day of the week [1,10,13]. Therefore,
the average number of transfusions per day over the previous
7 days and the day-of-the-week dummy variables were added
to the models. Thus, a total of 81 possible features were included
for prediction.

Blood Bank Inventory Model
The UKA transfusion department collects and prepares platelets
by apheresis. Registered donors have regular appointments or
are called in individually for donation. The entire production
chain, including donor activation, platelet preparation, and
quality control, takes 2 days (1 day for donor activation and 1
day for preparation and quality control). Donors are only called
on Monday through Friday. Therefore, no fresh platelets arrive
on Sundays or Mondays. After quality control, platelets have a
remaining shelf life of 4 days. In case of slender stock, additional
platelets are purchased from other hospitals or local providers
such as the local section of the German Red Cross Society. Such
an emergency purchase is available approximately 2 hours after
order. In rare cases, UKA sells platelets to other clinics with a
short supply if stock is high. However, as sales occur both very
rarely and irregularly, they were not included in the model.

For retrospective simulations of the blood bank inventory,
production orders, purchases, discards, and stock are calculated
at the end of each day of the observation period using an
iterative approach. The stepwise calculation model described
below was recalculated for each day of the time series.

As no fresh platelets arrive on Sundays and Mondays, different
ordering strategies and prediction intervals for demand are
required for different days of the week. Platelets ordered on day
i between Sunday and Wednesday will arrive on day i + 2.
Therefore, these orders need to countervail all platelet outgoings
on day i + 1 and i + 2. Orders made on Thursdays also arrive
after 2 days but need to account for the demand of the next 4
days as no orders can be made on Fridays and Saturdays.
Considering current stock as well as preceding orders, we
established the ordering strategy given in Equation 1, where oi

is the number of platelets ordered on day i, α is the parameter
target value for platelet stock at end of day, si is the current
platelet stock at the end of day i, pi(2) is the predicted demand
for days i + 1 and i + 2, pi(4) is the predicted demand for the
next 4 days, and oi–1 is the number of units ordered on day i –
1 as these will arrive on day i + 1. dw(i) represents the weekday
status of day i, with values starting from 0 for Sundays to 6
representing Saturdays.

We established the stepwise calculation model shown in Figure
2 to calculate si as well as other inventory variables. Here, rx, i

represents the remaining units that will be discarded at the end
of day i + x, x being the remaining shelf life, with values ranging
from 0 to 3 (0 indicating that these units are discarded at the
end of that same day). ui is the number of platelets actually used
on day i, wi is the number of platelets wasted on day i, and bi

is the number of units purchased from other providers on day
i. β and γ are parameters to control for emergency purchases—a
purchase is made if stock falls to or below β and, in this case,
γ is the target value for stock after emergency purchase. t1, t2,
t3, and t4 are temporary variables for convenient display. We
assume that the oldest platelet units are always the first to be
used. The following defaults (indicated as such by the notion
init) are set each day before moving through the calculation:

After moving through the stepwise calculation, si is calculated
to

si = r1, i + r2, i + ra, I (8)

α, β, and γ are chosen by minimizing the total cost c as defined
by Equation 9 using an exhaustive grid search with a range from
0 to 30 and steps of 1:

We arrived at this definition because the cost for a single platelet
unit is approximately US $350 when produced locally and
planned in advance. Buying platelets in an emergency is more
expensive. The actual price varies widely depending on several
factors, such as the total amount bought and costs for
transportation. On average, the price of a platelet unit bought
in an emergency is almost double compared with preplanned
production. The weight in Equation 9 was rounded up to also
punish the possible delay in transfusion because of transportation
time. Note that the blood bank inventory allows for temporarily
negative values for stock when moving through the stepwise
calculation process given in Figure 2 (t1, t2, t3, and t4).
Therefore, values of 0 for β and γ are possible. In this case,
emergency purchase is only initiated when demand exceeds
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stock (β=0), and just enough units are bought to satisfy demand,
ending that day with empty stock (γ=0). It is assumed that
emergency purchases will always succeed and, therefore, it is
simply a matter of buying as many units as required in
circumstances where there is no platelet stock. Consider the
following example for β=γ=0: stock is 2, and there is an

unexpected need for 4 platelet units (t4=−2). Emergency
purchase is initiated because t4<β, and 2 units are bought
because bi = −t4 + γ = 2 + 0. The 2 units from stock and the 2
units from emergency purchase are transfused, and the stock
after purchase is 0 (γ=0).

Figure 2. Blood bank inventory stepwise calculation model. For each day of the time series, initial values are set according to Equations 2-7. This
stepwise calculation is then carried out and, finally, total stock at end of day is calculated according to Equation 8.

Prediction Model Setup and Validation Strategy
Standard supervised learning was used to predict platelet
demand for the next 2 and 4 days. Predictions were made using
rolling-origin-recalibration evaluation as described by Bergmeir
and Benítez [21]. First, the models were trained on the first 500
days of the time series. Predictions were made for days 501 to
528. The models were then retrained on the first 528 days, and
the next predictions were made for the following 28 days. Both
models were retrained in this fashion every 28 days, including
recalibration of all hyperparameters. To this end, we also
followed the recommendations of Bergmeir and Benítez [21]
using 5-fold blocked cross-validation and the augmented
Dickey–Fuller unit root test with a trend-corrected regression
to check for stationarity in the presence of a trend over time.
The interval of 28 days was chosen to account for the weekly
seasonality in the data while controlling for the computational
expense of repeated retraining [1,10,13]. Mean squared error
(MSE) was used as a loss function for the cross-validation. We
used the Python 3 language library scikit-learn (Python Software
Foundation) to implement this validation strategy [22].

The accuracy of the predictions was measured with RMSE, the
Pearson correlation coefficient of the predicted and true values

(r2), and MAPE and expressed as mean and 95% CIs. CIs were
calculated using bootstrapping [23]. P values for the differences
in RMSE and MAPE between the models were obtained from

the corresponding CI as described by Altman et al [24]. P<.05
was defined as statistically significant.

Statistical Model
The first model was a LASSO as described by Tibshirani [25].
The LASSO is a shrinkage model for multiple linear regression.
Regression coefficients are calculated by minimizing the residual
sum of squares with a sparsity penalty given by the L1 norm of
the coefficient vector multiplied by a tuning parameter. Owing
to the form of the constraint, all coefficients are shrunken toward
0, and some become exactly 0. In this way, the LASSO trades
off variance for bias while also performing variable selection
and producing interpretable models [25]. As described above,
the tuning parameter was chosen via 5-fold blocked
cross-validation with MSE as the loss function. We used the
Python 3 language library scikit-learn to implement this model
[22].

Deep Learning Model
The second prediction model was an RNN. We used a sequential
model from the TensorFlow (Google Brain Team) library
(Figure 3) [26]. The first layer was an LSTM as described by
Hochreiter and Schmidhuber [27]. An L1–L2 regularizer was
combined with a dropout rate to reduce overfitting. The LSTM
output was passed to a flatten layer. We treated the prediction
of platelet demand as a regression problem and, therefore, used
a dense layer with a linear activation function. The dense layer
consisted of a single neuron. In preliminary tests on the data,
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the dropout rate, L1–L2 regularization, batch size, activation
function in the flatten layer, and number of units in the LSTM
layer were identified as influential hyperparameters. Therefore,
they were adjusted during training using a randomized grid

search within the validation strategy described above. All
hyperparameters and their search spaces are summarized in
Table 1. We used TensorFlow and the Python 3 language library
Keras to implement this model [26,28].

Figure 3. Architecture of the recurrent neural network used for prediction of platelet demand. Data are first passed to a long short-term memory layer
followed by a flatten layer and a dense layer to generate an integer output to our regression problem. LSTM: long short-term memory.

Table 1. Hyperparameters of the deep learning model and their respective search space for optimization via randomized grid search.

Search spaceParameter

50, 100Batch size

10, 50LSTMa units

0%-50%, steps of 5Dropout rate

10−9, 10−7, 10−5, 10−3L1 regularizer

10−9, 10−7, 10−5, 10−3L2 regularizer

ReLUb, linearFlatten layer activation function

aLSTM: long short-term memory.
bReLU: rectified linear unit.

Results

Platelet Transfusion, Outdating, and Shortage
During the observed period, 46,205 platelet units where
transfused at UKA. Daily transfusions ranged between 0 and
39 with an average of 11.50 (SD 6.02). Units transfused per
year increased from 2566 in 2008 to 5891 in 2018. Daily
averages were significantly different for different days of the
week as determined by 1-way analysis of variance (ANOVA;
F6=187; P<.001; Figure 4). No significant difference was found
for month of the year, also by 1-way ANOVA (F11=1.56;
P=.10). More platelets were transfused during the week than
on weekends. The time series of daily platelet transfusions was
confirmed to be trend-stationary by augmented Dickey–Fuller
unit root test with a trend-corrected regression (augmented
Dickey–Fuller statistic=−8.34; P<.001).

A total of 4654 platelet units expired during the observed 10
years. The daily average expiration was 1.16 (SD 2.77, range

0-32). Furthermore, 1-way ANOVA showed significant
differences in daily platelet expiration across different days of
the week (F6=48.9; P<.001), with higher values during the week
than on weekends (Figure 4). There was no significant difference
across the months of the year (F11=1.34; P=.20). The expiration
rates relative to transfusions were 10.1% and 11% for the entire
observed period and the validation period, respectively.

Emergency purchases were made for a total of 2988 units, with
a daily mean of 0.74 (SD 2.77, range 0-27). Furthermore, 1-way
ANOVA showed significant differences in daily platelet
purchases across different days of the week (F6=28.6; P<.001;
Figure 4) as well as across the months of the year (F11=1.82;
P=.046). Platelet supply was more often short during the week
than during weekends, with most emergency purchases being
on Mondays. February and June were the months with the most
severe supply shortages. The shortage rates relative to
transfusions were 6.47% and 7.05% for the entire observed
period and the validation period, respectively.
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Figure 4. Top to bottom: transfusions, outdating, and emergency purchase of platelet units. Left: daily patterns. Right: averages by day of the week.

Blood Bank Inventory Simulation
The retrospective simulations of our blood bank inventory using
the above-described blood bank inventory and prediction models
yielded the results described in this section. Blood bank
inventory simulation was performed separately for predictions
made by the LASSO and RNN models. Simulated outdating
rates were similar for both prediction methods, whereas purchase
and overall cost as defined by Equation 9 were lower with the
RNN forecasts. With the LASSO, outdating and shortage were
reduced from 11% to 4.93% and from 7.05% to 2.11%,
respectively. Using the predictions of the RNN, outdating was
reduced to 5%, and shortage fell to 1.68%. These reductions in
outdating and shortage are roughly equivalent to savings of US
$250,000 per annum. Simulated total cost was US $1.33 million
with the LASSO and US $1.241 million with the RNN (Equation

9). Figure 5 shows the cumulative plots for outdating, purchase,
and overall cost for both prediction models compared with the
real retrospective data.

The target values for platelet stock at the end of each day (α)
were calculated to be 13 and 14 when using the LASSO and
RNN predictions, respectively. The threshold for emergency
purchase of platelets (β) as well as the target value for platelet
stock after such purchases (γ) were 0 for both models. Note that
the blood bank inventory allows for temporarily negative values
for stock when moving through the stepwise calculation given
in Figure 2 (t1, t2, t3, and t4). Therefore, values of 0 for β and
γ mean that emergency purchases are only initiated when
demand exceeds current stock (β=0) and that just enough units
are bought to satisfy demand, ending that day with empty stock
(γ=0).
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Figure 5. Simulated cumulative outdating, purchase, and cost (as defined by Equation 9) compared with retrospective data. LASSO: least absolute
shrinkage and selection operator; RNN: recurrent neural network.

Forecast Accuracy
Table 2 shows the forecast accuracy for predictions of platelet
demand for the next 2 and 4 days measured by RMSE (the
square root of the mean square deviation of the predicted values
from the true values), the Pearson correlation coefficient of the

predicted and true values (r2), and MAPE for both the LASSO
and RNN models. The LASSO performed slightly better than

the RNN in terms of these error measures. The differences were
statistically significant only for RMSE and MAPE for the 4-day
forecast.

Figure 6 shows longitudinal plots of predicted platelet demand
alongside the true values for both models and both prediction
tasks. Both models trade off variance for bias in their
predictions—the RNN more so than the LASSO but with very
similar results, as can be seen in Table 2.

Table 2. Forecast performance of the least absolute shrinkage and selection operator (LASSO) and recurrent neural network (RNN) for predictions of
platelet demand for the next 2 and 4 days.

P valueMAPEc (%; 95% CI)P valuer2b (95% CI)P valueRMSEa (95% CI)Forecast period and method

.10.88.09Next 2 days

25.51 (24.56-26.51)0.73 (0.71-0.74)6.77 (6.57-6.98)LASSO

26.32 (25.33-27.41)0.71 (0.70-0.73)6.94 (6.74-7.15)RNN

.001.07<.001Next 4 days

18.11 (17.59-18.61)0.74 (0.72-0.75)10.78 (10.46-11.13)LASSO

19.22 (18.46-19.82)0.69 (0.67-0.71)11.52 (11.17-11.87)RNN

aRMSE: root mean squared error.
bPearson correlation coefficient of the predictions and the true values.
cMAPE: mean absolute percent error.
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Figure 6. Longitudinal time series plots of demand predictions and real values of platelet demand. LASSO: least absolute shrinkage and selection
operator; RNN: recurrent neural network.

Predictors of Platelet Demand
As described above, the LASSO performs feature selection and
produces interpretable models. The most influential predictors
of platelet demand for the next 2 and 4 days are listed in Table
3. The strongest predictor in both prediction tasks was the
average number of platelet transfusions over the previous 7
days. Other influential predictors were day of the week, number

of platelet counts between 20/nL and 10/nL, patients in the
oncology and psychiatry departments, and surgeries planned
for the next day in the neurosurgery department. The average
number of nonzero predictors over all model iterations was 50.7
(SD 20.409) and 41.8 (SD 14.389) in the 2-day and 4-day
forecasts, respectively. Owing to its complex layered structure,
the RNN does not provide direct information on the influence
of individual predictors.
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Table 3. Strongest predictors of platelet demand in the least absolute shrinkage and selection operator model. Mean predictor weights over all model
iterations.

Predictor weight, mean (SD)Forecast and predictor

2-day forecast

3.04PL7a

−2.12Weekday Friday

−2.08Weekday Thursday

1.54I4b

−1.17Weekday Saturday

1.17CBC_PL_cont 20-10c

0.99PPd

0.99OP_P_NCe

4-day forecast

1.68PL7

−1.14Weekday Saturday

−1.01Weekday Friday

0.80CBC_PL_cont 20-10

0.64I4

0.61OP_P_NC

0.60PP

0.60OP_P_GGf

aPL7: platelet transfusions over previous 7 days.
bI4: number of patients in the oncology ward.
cCBC_PL_cont 10-20: daily number of complete blood count essays with platelet count between >10/nL and ≤20/nL.
dPP: number of patients in the psychiatry wards.
eOP_P_NC: number of planned surgeries for the next day in the neurosurgery department.
fOP_P_GG: number of planned surgeries for the next day in the vascular surgery department.

Discussion

Principal Findings
The results of this study show that it is possible to predict
platelet demand at UKA with high accuracy using both
approaches investigated: LASSO and RNN with LSTM. These
results confirm previous work and, as a particularly relevant
aspect, support the generalizability of these models to different
sites [1,2].

Furthermore, the simulations of the blood bank inventory
suggest that these predictions can be used to reduce waste and
shortage of platelets at UKA by a considerable amount. The
implementation of such a prediction system at UKA might lead
to savings as high as US $250,000 per year. Although several
studies have investigated the prediction of platelet demand, very
few have examined the extent to which these predictions can
be used to improve inventory management via simulations or
field tests [1,2,10,13-16]. To the best of our knowledge, this
study is the first to compare LASSO and LSTM models in terms
of both prediction accuracy and possible reduction in waste and
shortage rates based on prediction-driven simulations.

Both the LASSO and RNNs with LSTM have previously been
described as powerful tools for predicting platelet demand [1,2].
Motamedi et al [2] predicted the next-day platelet demand using
these models, with very similar results to our study. They
reported MAPE values of 28.02% and 28.52% for the LASSO
and LSTM, respectively. Guan et al [1] reported possible
reduction in platelet outdating from 10.3% to 3.2% with no
shortages when using predictions made with the LASSO.
However, they did not report the prediction accuracy of their
model.

The prediction accuracy of the RNN was marginally inferior to
that of the LASSO in our study. This was previously reported
by Motamedi et al [2]. However, we argue that the use of deep
learning holds great potential not yet fully explored by our
project. The most important point is the ability of deep neural
networks to take in much more heterogeneous data than a
statistical model such as the LASSO [29]. Inclusion of data such
as diagnosis and medical history of patients may lead to further
refinement of predictions. Despite this potential, the fact that
neural networks do not allow for simple interpretation of
influential predictors, often referred to as the Black Box
Problem, is a potential downside of these systems [29-31].
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The most influential predictors identified by the LASSO (Table
3) were largely in accordance with previous studies. Previous
transfusions and day of the week, the most important predictors
in our model, have been described as influential by several
authors [1,2,10,13]. In addition, Guan et al [1,2], who also used
the LASSO, reported great influence for red cell count and
number of patients in the neurosurgery, vascular, and trauma
departments. Motamedi et al [2] reported high influence of
previous use, day of the week, and abnormal platelet count in
their LASSO model. Interestingly, neither of these studies found
the number of patients in the hematology and oncology
departments to be an influential predictor despite the fact that
platelet transfusions are very common in these patients [1-5].
However, this may be due to the intercorrelation effects of the
predictors.

As somewhat of an unexpected finding, we observed that the
blood bank simulation provided better results in terms of total
cost and shortage rates when using RNN predictions, whereas,
in accordance with previous results, the predictions made with

the LASSO were slightly better in terms of RMSE, r2, and
MAPE than those of the RNN. Although the differences are
small, this indicates that these error measures might not be ideal
for the problem. More specifically, the design of the ordering
process, as formalized in Equation 1, allows for bias in the
predictions to be compensated by the target value for the
end-of-day stock (α). However, the variance in prediction errors
cannot be compensated. Furthermore, because of the platelets’
shelf life of 4 days, prediction errors can be (randomly)
compensated to some extent by opposing errors within 4 days.
Finally, our definition of total cost (Equation 9) punishes
shortage more severely than an excess of platelets. These aspects
are not adequately represented by error measures such as RMSE,

r2, or MAPE. In particular, the temporal sequence of errors was
not accounted for.

Therefore, we might be missing out on some further reduction
in waste and shortage rates by using MSE as a loss function to
train the prediction models. Guan et al [1] circumvented this
problem by translating demand predictions and modeling of the
blood bank inventory into a single optimization problem, thereby
using outdating of platelets as a loss function. The problem
could also be addressed by replacing MSE as a loss function
with error measures that are specifically adapted to the problem
at hand. Moreover, this highlights the need for inventory
simulation or field tests for any prediction model as the potential
to reduce waste and shortage rates is to some extent dependent
on the structure and processes of the blood inventory. Further
investigation is needed in this area.

Limitations and Next Steps
With the aforementioned in mind, the modular structure of our
system with the prediction models and the blood bank inventory
as independent components is a limitation of our study.
However, it also has several advantages. First, it reduces the
complexity of the overall system. On the one hand, this allows
for simple interpretation and comparison of the prediction
models. In contrast, it enables the modeling of a very complex
blood inventory, incorporating separate predictions for weekdays
and weekends as well as emergency purchases while keeping

training times and computational expense manageable as the
prediction models do not need to be retrained during the grid
search for ideal blood bank inventory parameters. This flexible
modular approach will also allow for the addition of further
modules, such as a component accounting for blood types in
the predictions.

The absence of such a module in our system is another limitation
of this study. Although relevant to platelet transfusion, our
forecasts do not account for ABO blood types and Rh status
[18,32]. There is very limited literature on incorporating blood
types in predictions of platelet demand. Critchfield et al [13]
used a 7-day moving average of type distribution to account for
ABO blood types. Fanoodi et al [14] treated each blood type
(ABO and Rh status) as an independent time series for
prediction. Although this method is straightforward, it reduces
the number of data points available to the prediction models
and might lead to reduced prediction accuracy. We suggest the
addition of a separate prediction model to our system to forecast
blood type distribution of demand. The strong pattern of
autocorrelation in platelet demand, supposedly caused by the
fact that most patients receive several transfusions over a
prolonged period, suggests that the distribution of blood types
might also show strong autocorrelation [10,13]. The distribution
of blood types in the population could be a further clue to
address this problem. Another option is to directly include blood
types in a deep learning model based on the RNN presented
here as these models are capable of performing complex
end-to-end prediction tasks [29].

Although RMSE and MAPE are commonly used in the
evaluation of time series forecasts, these error measures might
not be the ideal choice here. Further to the potential problems
discussed above, their sensitivity to outliers is another limitation
[33,34]. As the evaluation of the models did not include testing
for significant outliers, they might, if present, cause slight
differences in forecast performance between the LASSO and
RNN. Therefore, further model refinement should include testing
for outliers in the predictions and, if necessary, error measures
that are more resilient to outliers, such as MAPE [33].

Although the ordering strategy given by Equation 1 does
consider current stock, it neglects the remaining shelf life of
units in stock. Adapting orders to the expiry profile of current
stock might be beneficial and should be investigated in further
studies.

In future applications, the prediction and simulation environment
presented here could be extended to other perishable goods
whose consumption data show similar characteristics. The
following data characteristics may be helpful in generalizing
this approach to other problems: (1) the data of platelet demand
investigated here are stationary in the presence of a trend, and
(2) the data have a strong pattern of autocorrelation with weekly
seasonality. From a practical point of view, the short shelf life
and high variance of daily demand for platelets are important
characteristics that should be considered to identify suitable
problems for this approach. Our system could also be used to
investigate possible optimization of the blood bank inventory,
such as collection of platelets during weekends, by comparing
savings in waste and shortage with additional staff costs.
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Conclusions
Both a LASSO model and an RNN with an LSTM layer can
predict platelet demand at the UKA with high accuracy. This
is in accordance with previous studies and further supports the
generalizability of these models to different sites. The
retrospective simulations of the blood inventory at the UKA

presented here show that the predictions of both models enable
a significant reduction in waste and shortage rates of platelets.
Further research is needed to exploit the full potential of deep
learning models for the prediction of platelet demand.
Furthermore, there is a need for models that take into account
ABO blood types in their predictions.
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