Published on in Vol 9, No 9 (2021): September
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/28776, first published
.
Journals
- Qu C, Zou Y, Dai Q, Ma Y, He J, Liu Q, Kuang W, Jia Z, Chen T, Gong Q. Advancing diagnostic performance and clinical applicability of deep learning-driven generative adversarial networks for Alzheimer's disease. Psychoradiology 2021;1(4):225 View
- Ghuwalewala S, Kulkarni V, Pant R, Kharat A. Levels of Autonomous Radiology. Interactive Journal of Medical Research 2022;11(2):e38655 View
- Furtado F, Catalano O. Editorial for “Automated MR Image Prescription of the Liver Using Deep Learning: Development, Evaluation, and Prospective Implementation”. Journal of Magnetic Resonance Imaging 2023;58(2):442 View
- Kulkarni V, Pawale S, Kharat A. A classical–quantum convolutional neural network for detecting pneumonia from chest radiographs. Neural Computing and Applications 2023;35(21):15503 View
- Brereton T, Malik M, Lifson M, Greenwood J, Peterson K, Overgaard S. The Role of Artificial Intelligence Model Documentation in Translational Science: Scoping Review. Interactive Journal of Medical Research 2023;12:e45903 View
- Anand A, Krithivasan S, Roy K. RoMIA: a framework for creating Robust Medical Imaging AI models for chest radiographs. Frontiers in Radiology 2024;3 View
- Natali T, Zhylka A, Olthof K, Smit J, Baetens T, Kok N, Kuhlmann K, Ivashchenko O, Ruers T, Fusaglia M. Automatic hepatic tumor segmentation in intra-operative ultrasound: a supervised deep-learning approach. Journal of Medical Imaging 2024;11(02) View
- Balagopalan A, Baldini I, Celi L, Gichoya J, McCoy L, Naumann T, Shalit U, van der Schaar M, Wagstaff K, Badawi O. Machine learning for healthcare that matters: Reorienting from technical novelty to equitable impact. PLOS Digital Health 2024;3(4):e0000474 View
- Keni S. Evaluating artificial intelligence for medical imaging: a primer for clinicians. British Journal of Hospital Medicine 2024;85(7):1 View
- Childs A, Mayol B, Lasalde-Ramírez J, Song Y, Sempionatto J, Gao W. Diving into Sweat: Advances, Challenges, and Future Directions in Wearable Sweat Sensing. ACS Nano 2024;18(36):24605 View