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Abstract

The use of machine learning to develop intelligent software tools for the interpretation of radiology images has gained widespread
attention in recent years. The development, deployment, and eventual adoption of these models in clinical practice, however,
remains fraught with challenges. In this paper, we propose a list of key considerations that machine learning researchers must
recognize and address to make their models accurate, robust, and usable in practice. We discuss insufficient training data,
decentralized data sets, high cost of annotations, ambiguous ground truth, imbalance in class representation, asymmetric
misclassification costs, relevant performance metrics, generalization of models to unseen data sets, model decay, adversarial
attacks, explainability, fairness and bias, and clinical validation. We describe each consideration and identify the techniques used
to address it. Although these techniques have been discussed in prior research, by freshly examining them in the context of medical
imaging and compiling them in the form of a laundry list, we hope to make them more accessible to researchers, software
developers, radiologists, and other stakeholders.

(JMIR Med Inform 2021;9(9):e28776) doi: 10.2196/28776
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Introduction

Although radiology imaging has emerged as an indispensable
tool in diagnostic medicine, there is a worldwide shortage of
qualified radiologists to read, interpret, and report these images
[1,2]. The volume of images is growing faster than the number
of radiologists. The high workload that this causes leads to
errors in diagnosis because of human fatigue, unacceptable
delays in reporting, and stress and burnout in radiologists. On
the other hand, artificial intelligence (AI) and machine learning
models have shown remarkable performance in the automated
evaluation of medical images [3-5]. In this situation, hospitals
are increasingly drawn toward adopting computer-aided
detection technologies for processing scans. These technologies
show considerable promise in improving diagnostic accuracy,
reducing reporting time, and boosting radiologist productivity.

Supervised machine learning, the most common form of
machine learning, works in two phases. In the first phase, the
algorithm implemented as a software reads a training data set
consisting of images along with their corresponding labels. It
processes these data, extracts patterns from it, and learns a
function that maps an input image to its corresponding label.
The learned mapping function along with the extracted patterns
are mathematically represented in the form of the trained model.
This is called the training phase. In the second phase, called
the inference phase, the trained model is used to read input
images and make predictions. Artificial neural networks are a
class of machine learning algorithms; artificial neural networks
with many layers are called deep neural networks. In the
literature, the terms deep learning, AI, and artificial neural
networks tend to be used interchangeably. In this paper, we use
machine learning to broadly refer to all the terms mentioned
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earlier in addition to conventional machine learning algorithms,
such as linear regression, support vector machines, decision
trees, and random forests.

The development of machine learning models for radiology
involves many challenges. High-quality training data are vital
for good model performance [6] but are difficult to obtain.
Available data may lack volume or diversity. It may be scattered
across multiple hospitals. Even if the image data are available,
they may not be labeled. Radiology scans suffer from a high
degree of interreader variability, where 2 or more radiologists
label the data inconsistently [7,8]; this may lead to noise or
uncertainty in the ground truth labels. The distribution of target
classes may be heavily skewed, especially for rare pathologies.
This imbalance in class representation is often accompanied by
unequal misclassification costs across classes. Care must be
taken when dealing with imbalanced data sets, and this
sometimes requires using special performance measures [9]. A
model that works well on data from one hospital may perform
poorly on data from a different hospital [10]. Similarly, a model
deployed in practice at a hospital may experience a gradual
decay in performance at the same hospital [11]. Machine
learning models have been shown to be vulnerable to malicious
exploits and attacks [12-14]. To support adoption by
radiologists, the deployed models should be able to explain their
decisions [15], and they should not discriminate patients on the
basis of gender, ethnicity, age, income, among others [16].

This study has a simple structure. In the Key Considerations
section, we enumerate the key considerations that machine
learning researchers should acknowledge and address. For each
consideration, we describe the common challenges and their
significance before suggesting solutions to overcome them. In
the Conclusions section, we discuss other overarching
limitations that hinder the adoption of machine learning in
clinical radiology practice.

Key Considerations

Insufficient Training Data
Machine learning models are data hungry, and their performance
depends heavily on the characteristics of the data used to train
them [6]. The training set size has a direct and significant effect
on the performance of the models. However, the heterogeneity
and diversity of the training data influence the ability of the
models to generalize to unseen data sources [17]. To develop
robust machine learning models, researchers need access to
large medical data sets that adequately represent data diversity
in terms of population features such as age, gender, ethnicity,
and medical conditions and imaging features such as equipment
manufacturers, image capture settings, and patient posture. Most
available data sets in medical imaging do not meet these
requirements [18-20]. As many critical conditions have low
rates of occurrence, very little data are available for them.
Machine learning models trained using these scanty data to
diagnose rare conditions fail to perform well in practice even
if they demonstrate good performance in retrospective
evaluations.

Several methods have been proposed for dealing with
insufficient data for training models. Data augmentation
techniques including geometric transformations and color-space
transformations can enhance the quantity and variety of training
data [21]. Generative adversarial networks have shown success
in generating synthetic images for rare pathologies, which can
be further used for model training [22]. Although these
techniques allow models to be trained on scarce data by
artificially increasing the variation in the data set, they cannot
serve as a substitute for high-quality data.

Decentralized Data Sets
Many medical data sets are naturally distributed across multiple
storage devices connected to networks owned by different
institutions. In traditional machine learning settings, these data
sets need to be consolidated into a single repository before
training the models. Moving large volumes of data across
networks poses several logistical and legal challenges [23].
Government policies such as the General Data Protection
Regulation [24], the Health Insurance Portability and
Accountability Act [25], and the Singapore Personal Data
Protection Act [26] also stipulate restrictions on sharing and
movement of data across national borders.

Privacy-preserving distributed learning techniques such as
federated learning [27] and split learning [28] enable machine
learning models to train on decentralized data sets at multiple
client sites without moving the data and compromising privacy.
Implementing these techniques, however, entails additional
overheads, which may render the exercise unfeasible. These
overheads include the high cost of developing software that
supports these technologies, the high network communication
bandwidth required, the orchestration effort in deploying it at
multiple sites, and the possibly reduced performance of the
predictive models [29]. Federated learning generates a global
shared model for all clients, leading to situations where, for
some clients, the local models trained on their private data
perform better than the global shared model. In such situations,
additional personalization techniques may be required to
fine-tune the global model individually for each client [30].

High Cost of Annotations
Supervised machine learning requires the annotation of
radiology images before they can be used to train the model.
Image-level annotations classify each image into one or more
classes, whereas region-level annotations highlight regions
within an image and classify each region into one or more
classes. As the predictive performance of the model is directly
influenced by the quality of the annotations, it is imperative that
the data are annotated by qualified radiologists or medical
practitioners [31]. This makes the process of annotation
exorbitantly expensive in many cases.

Several efforts have been made to use natural language
processing (NLP) techniques to automatically annotate images
by extracting labels from radiology text reports [32-34].
Semisupervised approaches can be used when a small amount
of labeled data are available along with a larger amount of
unlabeled data [35,36]. As manual annotations are expensive,
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AI-based automated image annotation techniques can be
considered [37].

Ambiguous Ground Truth
As hospital data sets usually contain images accompanied by
their text reports, many projects are kickstarted by using NLP
techniques to automatically annotate the images using the
reports. Radiology reports, however, vary widely in their
comprehensiveness, style, language, and format [38]. Even if
state-of-the-art NLP manages to accurately extract all the
findings from the text report, the report itself may not mention
all the findings. Olatunji et al [39] showed that there is a large
discrepancy between what radiologists see in an image and what
they mention in the report; reporting radiologists usually
document only those findings that are relevant to the immediate
clinical context and are likely to miss reporting nonactionable
or borderline findings.

Radiology images suffer from significant interreader variability,
where 2 or more experts may disagree on the findings from a
scan [7,8,40-43]. Sakurada et al [44], for instance, report low
interreader κ values ranging from 0.24 to 0.63 for assessment
of different pathologies from chest radiographs. In practice,
annotation workflows generally engage a single reader to assign
ground truth labels to images. An improvement over this
involves engaging multiple independent readers and considering
their majority vote as the ground truth label. However, single
reader or majority vote approaches may miss labeling
challenging but critical findings.

This risk can be mitigated by using multiphase reviews [45] or
expert adjudication [46] to create high-quality labels.
Majkowska et al [46] showed that adjudication improved the
consensus among radiologists to 96.8% compared with 41.8%
after the first independent readings when assessing chest
radiographs. Raykar et al [47] proposed a probabilistic approach
to determine the hidden ground truth from labels assigned by
multiple radiologists and demonstrated that this method is
superior to majority voting. In some clinical settings, radiology
imaging is used for initial screening before conducting
subsequent confirmatory tests. For example, chest x-ray scans
may be used as a first-line test before subsequently conducting
a computed tomography scan, laboratory tests, or biopsy. Data
from these subsequent tests, if available, should be used to
validate and correct the labels assigned to the images from the
screening test. In situations where human-labeled ground truth
is noisy or ambiguous, developing a process to reduce variability
and improve label quality may yield better models than attempts
to improve model performance on the original labels by other
means.

Imbalance in Class Representation
Class imbalance occurs when all label classes are not equally
represented in the training data set [48]. This is a common
situation when building binary classifiers for medical data sets
where the number of normal examples in which the target
abnormality is absent is many times larger than the number of
abnormal examples in which it is present. As machine learning
models are usually trained by optimizing a loss function across
all training examples, the trained models tend to favor the

majority class over the minority class. Researchers have
empirically evaluated the adverse effect of class imbalance on
classification performance in several studies [9,49-53].

Class imbalance can be handled at the data level or the
algorithmic level. Resampling strategies can be used to address
imbalances in the training data by either undersampling the
majority classes or oversampling the minority classes. Many
comparative evaluations of these approaches exist, sometimes
with contradictory conclusions. Drummond et al [54], for
instance, argued that undersampling works better than
oversampling, whereas Batista et al [55] reported superior
performance using oversampling. However, we caution the
reader against hasty generalizations and note that these
comparisons are highly dependent on the data set, the machine
learning algorithm, the sampling technique used, and the
parameters of the experiments. Chawla et al [56] proposed the
synthetic minority oversampling technique, a technique to
generate synthetic examples to balance the data set, and showed
that the combination of synthetic minority oversampling
technique and undersampling performs better than plain
undersampling or oversampling. Similarly, oversampling can
also be performed using geometric augmentations, color-space
augmentations, or generative models to produce synthetic
images. An imbalance in the number of examples can also be
addressed at the algorithmic level using methods such as
one-class classification, outlier or anomaly detection, regularized
ensembles, and custom loss functions [9,57-60].

Asymmetric Misclassification Costs
Standard machine learning settings assume that all
misclassifications between classes are equal and incur the same
penalty. This assumption is not true for many medical imaging
problems. For example, the cost of classifying a normal scan
as abnormal may be very different from the cost of classifying
an abnormal scan as normal.

This asymmetrical nature of the classification problem can be
handled either at the time of deployment or during development.
The trained model can be tuned to achieve higher sensitivity or
specificity according to the requirements at deployment time.
Alternatively, the variation in misclassification penalties can
be represented as a cost matrix, where each element C(i,j)
represents the penalty of misclassifying an example of class i
as class j. The model can then be trained by minimizing the
overall cost as defined by the asymmetrical loss function. For
more details, we refer the reader to the literature on
cost-sensitive learning [9,61,62].

Relevant Performance Measures
Machine learning researchers and practitioners tend to ignore
the question of how model performance should be evaluated in
cases of imbalanced data sets and asymmetric misclassification
costs. Most binary classification models produce a
continuous-valued output score. This score is converted into
discrete binary labels using a cutoff threshold. Owing to its
simplicity, it is tempting to use accuracy, defined as the
percentage of predictions that are correct, as a measure of
performance. However, in the case of imbalanced data sets,
accuracy is ineffective and provides an incomplete and often
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misleading picture of the ability of the classifier to discriminate
between the two classes [63,64].

Using two or more measures such as sensitivity, specificity,
and precision, provides a better picture of the discriminative
performance of a classifier [65]. However, these measures
depend on the cutoff threshold mentioned earlier. Furthermore,
the decision to set the threshold is often guided not by
technology but by business or domain concerns. Comparing the
two models by considering multiple performance measures
across different operating thresholds is challenging. The receiver
operating characteristic curve, on the other hand, captures the
model performance at all threshold operating points. The area
under the receiver operating characteristic curve (AUROC) thus

serves as a single numerical score that represents the
performance of the model across all operating threshold points.
This has made AUROC a metric of choice for reporting the
classification performance of machine learning models.
Unfortunately, AUROC too can be deceptive when dealing with
imbalanced data sets and may provide an overly optimistic view
of performance [9]. The precision-recall curve and the area
under it are more suitable for describing classification
performance when data sets are imbalanced [66,67]. Drummond
and Holte proposed cost curves that describe the classification
performance over asymmetric misclassification costs and class
distributions [68,69]. Table 1 shows how accuracy can be
misleading because of imbalanced data sets.

Table 1. Example illustrating how accuracy can be misleading in case of imbalanced data sets.

TotalPredicted as positivePredicted as negative

901080Actual negative

1055Actual positive

1001585Total

In the confusion matrix mentioned earlier, of 100 test examples,
90 are negative and 10 are positive. The classifier predicts 85
of them as negative and 15 as positive. This gives a high
accuracy of 0.85 and a high specificity of 0.89. However, the
complete picture is seen when we consider the low sensitivity
of 0.50 and precision of 0.33.

Generalization of Models to Unseen Data Sets
Machine learning models are routinely evaluated on a hold-out
set taken from the same source as the training set [70]. The
available data are divided into two parts. One part is used to
train and validate the models. The second part, called the test
set or hold-out set, is used to estimate the final performance of
the trained model when deployed. The underlying premise is
that the data used to train the model are representative of the
data that the model will encounter during clinical use. This
assumption is often violated in practice, and this makes the
performance on the hold-out set an unreliable indicator of future
performance in clinical deployment.

Poor generalization of models to diverse patient groups is one
of the biggest hurdles for the adoption of AI and machine
learning in health care. One reason for the poor generalization
is the difference in the image characteristics between images
from the training sites and those from the deployment site. This
variation, also known as data set shift, can occur because of
differences in hospital procedures, equipment manufacturers,
image acquisition parameters, disease manifestations, patient
populations, among others. Owing to the data set shift, models
trained using data from one hospital may perform poorly on
data from another hospital [71]. We note here that this inability
to generalize to data sets from an unseen origin is different from
the problem of overfitting, where the model shows poor
performance even on test sets from the same origin. Learning
irrelevant confounders instead of relevant features is another
reason why models fail to generalize to data from unseen origins.
Machine learning models are notorious for exploiting
confounders in the training data. For example, Zech et al [72]

showed that a pneumonia classification model trained on data
from 2 hospitals learned to leverage the difference between
prevalence rates at the 2 hospitals instead of the relevant visual
features.

Data augmentation can improve model generalization by
increasing the variations in the training set [73]. Image
processing techniques, including standardization, normalization,
reorientation, registration, and histogram matching, can be used
to harmonize images sourced from different origins and remove
domain bias. However, Glocker et al [74] showed that even
with a state-of-the-art image preprocessing pipeline, these
techniques for harmonization were unable to remove
scanner-specific bias, and machine learning models were easily
able to discriminate between the different origins of the data.

Domain adaptation techniques can be used to fine-tune models
to a new target domain by narrowing the gap between the source
and target domains in a domain-invariant feature space [75-79].
On the other hand, domain generalization techniques attempt
to train models that are sensitive only to features relevant to the
classification task but insensitive to confounding features that
differentiate between the domains [80-85].

Model Decay
Model decay refers to the phenomenon in which the performance
of a deployed machine learning model deteriorates over time
[11]. Supervised machine learning algorithms extract patterns
from the training data to learn a mapping between independent
input variables and a dependent target variable. This process
involves making an implicit assumption that the data
encountered in deployment will be stationary and will not
change over time; this assumption is often violated in practice
because of the changes in hospital workflows, imaging
equipment, patient groups, evolving adoption of AI solutions,
among others.

Model decay occurs owing to changes in the underlying data.
These changes can be broadly classified into three types: (1)
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covariate shift occurs when there are changes in the distribution
of the independent input variables (eg, the average age of the
population increases over time); (2) prior probability shift occurs
when there are changes in the distribution of the dependent
target variables (eg, the prevalence of a particular disease in the
target population may change because of seasonality or an
epidemic); and (3) concept drift occurs when there are changes
in the relationship between the independent and dependent
variables (eg, changes in a hospital’s diagnostic protocols or a
radiologist’s interpretation regarding which visual manifestations
should or should not be considered indicative of a pathology).
These changes can be sudden, gradual, or cyclic.

Detecting model decay requires continuous monitoring of the
deployment time performance against a human-labeled
subsample of the data. If the performance drops below a
predetermined threshold, an alarm is triggered, and the model
is retrained or fine-tuned using the most recent data. This
retraining can also be conducted periodically as a routine
maintenance activity. For more details, including theoretical
frameworks for understanding model decay or practical
solutions, readers can refer to additional reviews [11,86-89].

Adversarial Attacks
An adversarial example is constructed by deliberately injecting
perturbations in the original image to trick the model into
misclassifying the label for that image [12]. Machine learning
models are susceptible to manipulation using such adversarial
examples [90,91]. Data poisoning attacks [13] introduced
adversarial examples in the training data to manipulate the
diagnosis of the model being developed. On the other hand,
evasion attacks [14] use adversarial examples to influence
predictions during deployment. Health care is a huge economy,
and many decisions regarding diagnosis, reimbursements, and
insurance may be governed or assisted by algorithms in the near
future. Hence, the discovery of these vulnerabilities has raised
pressing concerns regarding the safety and usability of machine
learning models in clinical practice.

Qayyum et al [92] provided a detailed taxonomy of defensive
techniques against adversarial attacks by grouping them into
three broad categories: (1) reconstructing the training or testing
data to make it more difficult to manipulate [90,93-96], (2)
modifying the model to make it more resilient to adversarial
examples [97-101], and (3) using auxiliary models or ensembles
to detect and neutralize adversarial examples [102-106].
Adversarial attacks and their countermeasures are an evolving
research area, and there are excellent reviews for the same
[107-109].

Explainability
The power of neural networks to uncover hidden relationships
between variables and use them to make predictions is tempered
by one disadvantage: the exact process the neural network uses
to arrive at a decision is unclear to humans. This is why neural
networks are sometimes called black boxes whose inner
workings cannot be observed. To what extent can we delegate
decision-making to machines while we remain unaware of how
the machine arrives at a decision is a key question that stands

in the way of adopting algorithms in many industries, including
autonomous vehicles, law, finance, among others.

Algorithmic explainability is especially important in medicine,
where stakes are high, and the field is prone to litigation. In the
context of radiology, explainability can be improved by using
localization models that highlight the region of interest within
the scan that is suspected to contain the abnormality instead of
classification models that only indicate the presence or absence
of an abnormality. However, the development of localization
models also requires training data to have region-based
annotations in the form of bounding boxes or free-form masks.
Where region-based annotations are not available, saliency maps
[110] and explainability frameworks [111] can be used to
identify a region within the image that most contributes to a
particular decision. Another way to improve the user’s trust in
the models is to predict a confidence score in addition to the
prediction. For example, instead of merely stating the prediction
“Probability of Tuberculosis: 75%,” the system should also state
the model’s confidence “Probability of Tuberculosis: 75%,
Confidence in this prediction: Low.” Deployment settings where
predictive models are used to autonomously make decisions
demand more stringent conditions of explainability than settings
where the models are used to guide humans who make the final
decisions. A comprehensive analysis of explainers in the domain
of computer vision was performed by Buhrmester et al [112].

There have been calls to limit the use of AI and machine
learning only to rule-based systems in fields where algorithmic
decisions affect human lives [113]. These systems are
transparent and can trace the relationship between the input and
the output as a sequence of rules that humans can understand.
We find two problems with this approach. First, one of the chief
advantages of using neural networks is that they can model
complex relationships that humans cannot understand, and this
is precisely what makes them so effective. Second, making
decision systems transparent and explainable also makes them
vulnerable to malicious attacks. A transparent rule-based method
to make decisions can be hacked, gamed, or exploited more
easily than a black box system [114,115].

Fairness and Bias
Algorithmic systems play a key role in guiding decisions that
impact the delivery of health care to patients. Therefore, it is
desirable that these systems are free of societal biases and their
decisions are fair and equitable. Unfortunately, many existing
data sets [18,43] reflect the biases of the societies that they
represent [116], and it is difficult to detect and remove bias
inherent in the training data. Obermeyer et al [16] showed, for
example, that a widely used algorithmic system exhibited racial
bias against Black patients, which reduced the number of Black
patients eligible for extra care by more than half.

In principle, a predictive model is considered fair if it does not
discriminate patients on the basis of sensitive variables such as
gender, ethnicity, disability, and income. However, translating
this seemingly simple principle into practice is a challenging
issue. Researchers have developed numerous mathematical
definitions of fairness and techniques to implement them [117].
One technique, for example, excludes sensitive variables from
the input when training the model. Another technique is to tune
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the model so that it demonstrates the same level of performance
as measured by sensitivity, specificity, among others, across all
groups defined by the sensitive variables. Corbett-Devies and
Goel [118] show that although appealing, these techniques suffer
from significant statistical limitations and may adversely affect
the same groups they were designed to protect. Pleiss et al [119]
show how different definitions of fairness can be mutually
incompatible, and a model designed to comply with one
definition may violate another equally valid definition.

Algorithmic bias and fairness are evolving fields of research
that lie at the intersection of machine learning, public policy,
law, and ethics. We believe that fairness is not inherently a
technological problem but a societal one. Coercing technology
to solve it can lead to automated systems that tick the right boxes
for some arbitrary definition of fairness but eventually end up
worsening social inequality and discrimination behind a veneer
of technical neutrality [120].

Clinical Validation
A comprehensive evaluation to assess the predictive
performance and clinical utility of a model must be conducted
before it can be deployed in clinical practice. When a model is
evaluated on a hold-out set collected from the same sources
from which the training data are collected, the evaluation is
called an internal validation. When a data set from an unseen
source is used to evaluate the model, the evaluation is called
external validation. As described earlier in the section
Generalization of Models to Unseen Data Sets, the lack of
generalization to unseen data sources is one of the biggest
challenges in the adoption of machine learning in practice.
Despite this, only a fraction of the published studies report the
results of an external validation [121]. Mahajan et al [122]
presented examples to advocate the case for independent
external validation of models before deployment and described
a framework for the same. Park et al [31] proposed a
methodology with a checklist for evaluating the clinical
performance of the models. The TRIPOD statement [123]
provides guidelines for transparent reporting of the development
and validation of prediction models for prognosis and diagnosis
models. Although retrospective evaluations allow machine
learning developers to test their models on large and diverse
data sets, prospective evaluations allow testing in real-world
environments; both types of evaluations are equally important
and should be meticulously carried out before full-scale
adoption.

Conclusions

We identify the key challenges that researchers face in
developing accurate, robust, and usable machine learning models
that can create value in clinical radiology practice. These
challenges and the techniques to overcome them have been
discussed previously in a piecemeal manner in prior research
literature. In this study, we re-examined them in the context of
medical imaging. By compiling them in the form of a laundry
list, we hope to make this research more readily accessible.

Hospital workflows and practices vary widely from one hospital
to another, even within the same geography. This increases the
difficulty of seamlessly integrating predictive models into
hospital workflows. The nonuniformity in workflows also raises
the question of whether the reported performance of a model is
reproducible in a different clinical context. This is an ongoing
research, and satisfactory solutions are yet to be found.

The ultimate objective of diagnostic machine learning models
is to improve patient outcomes. However, improvement in
diagnostic performance does not, by itself, cause an
improvement in patient outcomes [31]. Radiological diagnosis
is only one of the many steps that eventually leads to treatment.
Therefore, a computerized diagnostic system must be placed
appropriately in the workflow. How the system presents the
results to the reporting radiologist and what action the radiologist
takes on receiving them are important factors that influence the
usefulness of the system in practice.

On the one hand, medical imaging is a broad and complex field
that encompasses numerous imaging modalities, pathological
conditions, and diagnostic protocols. On the other hand, machine
learning is an active area of research with thousands of new
techniques published every year. The combined diversity of
both fields along with nonuniform hospital practices, regulatory
restrictions on data sharing, and lack of standardized reporting
of results make it difficult to clearly assess the role and potential
of machine learning applications in medical imaging. We believe
that machine learning has great potential in improving diagnostic
accuracy, lowering reporting times, reducing radiologist
workloads, and ultimately improving the delivery of health care.
To realize this potential, however, a concerted across-the-board
effort will be required from physicians, radiologists, patients,
hospital administrators, data scientists, software developers,
and other stakeholders.
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