Published on in Vol 9, No 5 (2021): May
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/25237, first published
.

Journals
- Loh H, Ooi C, Seoni S, Barua P, Molinari F, Acharya U. Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Computer Methods and Programs in Biomedicine 2022;226:107161 View
- Watson M, Awwad Shiekh Hasan B, Al Moubayed N. Using model explanations to guide deep learning models towards consistent explanations for EHR data. Scientific Reports 2022;12(1) View
- Chambers P, Watson M, Bridgewater J, Forster M, Roylance R, Burgoyne R, Masento S, Steventon L, Harmsworth King J, Duncan N, al Moubayed N. Personalising monitoring for chemotherapy patients through predicting deterioration in renal and hepatic function. Cancer Medicine 2023;12(17):17856 View
- Swinckels L, Bennis F, Ziesemer K, Scheerman J, Bijwaard H, de Keijzer A, Bruers J. The Use of Deep Learning and Machine Learning on Longitudinal Electronic Health Records for the Early Detection and Prevention of Diseases: Scoping Review. Journal of Medical Internet Research 2024;26:e48320 View
- Jiang H, Wang H, Pan T, Liu Y, Jing P, Liu Y. Mobile Application and Machine Learning-Driven Scheme for Intelligent Diabetes Progression Analysis and Management Using Multiple Risk Factors. Bioengineering 2024;11(11):1053 View
- Watson M, Chambers P, Steventon L, Harmsworth King J, Ercia A, Shaw H, Al Moubayed N. From prediction to practice: mitigating bias and data shift in machine-learning models for chemotherapy-induced organ dysfunction across unseen cancers. BMJ Oncology 2024;3(1):e000430 View
- Watson M, Boulitsakis Logothetis S, Green D, Holland M, Chambers P, Al Moubayed N. Performance of machine learning versus the national early warning score for predicting patient deterioration risk: a single-site study of emergency admissions. BMJ Health & Care Informatics 2024;31(1):e101088 View
- Zou Q, Chen B, Zhang Y, Wu X, Wan Y, Chen C. Mixed-effects neural network modelling to predict longitudinal trends in fasting plasma glucose. BMC Medical Research Methodology 2024;24(1) View
- Garg S, Kitchen R, Gupta R, Pearson E. Applications of Artificial Intelligence in predicting drug responses for Type 2 Diabetes (Preprint). JMIR Diabetes 2024 View
- Pedersen S, Damslund N, Kjær T, Olsen K, Sabbatinelli J. Optimising test intervals for individuals with type 2 diabetes: A machine learning approach. PLOS ONE 2025;20(2):e0317722 View
- Al-hussein F, Tafakori L, Abdollahian M, Al-Shali K, Al-Hejin A, Heddam S. Predicting Type 2 diabetes onset age using machine learning: A case study in KSA. PLOS ONE 2025;20(2):e0318484 View
- Al-hussein F, Abdollahian M, Tafakori L, Al-Shali K, Imoize A. A hybrid approach to enhance HbA1c prediction accuracy while minimizing the number of associated predictors: A case-control study in Saudi Arabia. PLOS One 2025;20(6):e0326315 View
Conference Proceedings
- Watson M, Hasan B, Al Moubayed N. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Learning How to MIMIC: Using Model Explanations to Guide Deep Learning Training View