Published on in Vol 8, No 9 (2020): September

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/20995, first published .
Identifying Key Predictors of Cognitive Dysfunction in Older People Using Supervised Machine Learning Techniques: Observational Study

Identifying Key Predictors of Cognitive Dysfunction in Older People Using Supervised Machine Learning Techniques: Observational Study

Identifying Key Predictors of Cognitive Dysfunction in Older People Using Supervised Machine Learning Techniques: Observational Study

Journals

  1. Renn B, Schurr M, Zaslavsky O, Pratap A. Artificial Intelligence: An Interprofessional Perspective on Implications for Geriatric Mental Health Research and Care. Frontiers in Psychiatry 2021;12 View
  2. Li X, Pei Y, Zhao Y, Song H, Zhao J, Yan L, He H, Lu S, Yan X. Memristors based on carbon dots for learning activities in artificial biosynapse applications. Materials Chemistry Frontiers 2022;6(8):1098 View
  3. Kim G, Park K, Kim Y, Jeong G. Increased Hippocampal-Inferior Temporal Gyrus White Matter Connectivity following Donepezil Treatment in Patients with Early Alzheimer’s Disease: A Diffusion Tensor Probabilistic Tractography Study. Journal of Clinical Medicine 2023;12(3):967 View
  4. Bohn L, Drouin S, McFall G, Rolfson D, Andrew M, Dixon R. Machine learning analyses identify multi-modal frailty factors that selectively discriminate four cohorts in the Alzheimer’s disease spectrum: a COMPASS-ND study. BMC Geriatrics 2023;23(1) View
  5. Ariza M, Béjar J, Barrué C, Cano N, Segura B, Bernia J, Arauzo V, Balague-Marmaña M, Pérez-Pellejero C, Cañizares S, Muñoz J, Caballero J, Carnes-Vendrell A, Piñol-Ripoll G, Gonzalez-Aguado E, Riera-Pagespetit M, Forcadell-Ferreres E, Reverte-Vilarroya S, Forné S, Muñoz-Padros J, Bartes-Plan A, Muñoz-Moreno J, Prats-Paris A, Pons I, Molina J, Casas-Henanz L, Castejon J, Mas M, Jodrà A, Lozano M, Garzon T, Cullell M, Vega S, Alsina S, Maldonado-Belmonte M, Vazquez-Rivera S, García-Cabello E, Molina Y, Navarro S, Baillès E, Cortés C, Junqué C, Garolera M. Cognitive reserve, depressive symptoms, obesity, and change in employment status predict mental processing speed and executive function after COVID-19. European Archives of Psychiatry and Clinical Neuroscience 2025;275(4):973 View
  6. Schiffmann R, Turnbull J, Krupnick R, Pulikottil-Jacob R, Gwaltney C, Hamed A, Batsu I, Heine W, Mengel E. Gaucher disease type 3 from infancy through adulthood: a conceptual model of signs, symptoms, and impacts associated with ataxia and cognitive impairment. Orphanet Journal of Rare Diseases 2025;20(1) View
  7. Tobin J, Black M, Ng J, Rankin D, Wallace J, Hughes C, Hoey L, Moore A, Wang J, Horigan G, Carlin P, McNulty H, Molloy A, Zhang M. Identifying comorbidity patterns of mental health disorders in community-dwelling older adults: a cluster analysis. BMC Geriatrics 2025;25(1) View

Books/Policy Documents

  1. Hentosh L, Savchyn V, Kravchenko O. Advances in Computer Science for Engineering and Education VI. View

Conference Proceedings

  1. Wang J, Black M, Rankin D, Wallace J, Hughes C, Hoey L, Moore A, Tobin J, Zhang M, Ng J, Horigan G, Carlin P, McCarroll K, Cunningham C, McNulty H, Molloy A. 2023 31st Irish Conference on Artificial Intelligence and Cognitive Science (AICS). Analysis of Risk Factors and Diagnosis for Anxiety Disorder in Older People with the Aid of Artificial Intelligence: Observational Study View
  2. Nordin N, Razak A, Shariff K, Azizan A. 2025 21st IEEE International Colloquium on Signal Processing & Its Applications (CSPA). Machine Learning-Based Exploratory Analysis of Fall Risk Classification in Older Adults View