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Abstract

Background: Machine learning techniques, specifically classification algorithms, may be effective to help understand key
health, nutritional, and environmental factors associated with cognitive function in aging populations.

Objective: This study aims to use classification techniques to identify the key patient predictors that are considered most
important in the classification of poorer cognitive performance, which is an early risk factor for dementia.

Methods: Data were used from the Trinity-Ulster and Department of Agriculture study, which included detailed information
on sociodemographic, clinical, biochemical, nutritional, and lifestyle factors in 5186 older adults recruited from the Republic of
Ireland and Northern Ireland, a proportion of whom (987/5186, 19.03%) were followed up 5-7 years later for reassessment.
Cognitive function at both time points was assessed using a battery of tests, including the Repeatable Battery for the Assessment
of Neuropsychological Status (RBANS), with a score <70 classed as poorer cognitive performance. This study trained 3
classifiers—decision trees, Naïve Bayes, and random forests—to classify the RBANS score and to identify key health, nutritional,
and environmental predictors of cognitive performance and cognitive decline over the follow-up period. It assessed their
performance, taking note of the variables that were deemed important for the optimized classifiers for their computational
diagnostics.

Results: In the classification of a low RBANS score (<70), our models performed well (F1 score range 0.73-0.93), all highlighting
the individual’s score from the Timed Up and Go (TUG) test, the age at which the participant stopped education, and whether or
not the participant’s family reported memory concerns to be of key importance. The classification models performed well in
classifying a greater rate of decline in the RBANS score (F1 score range 0.66-0.85), also indicating the TUG score to be of key
importance, followed by blood indicators: plasma homocysteine, vitamin B6 biomarker (plasma pyridoxal-5-phosphate), and
glycated hemoglobin.

Conclusions: The results suggest that it may be possible for a health care professional to make an initial evaluation, with a high
level of confidence, of the potential for cognitive dysfunction using only a few short, noninvasive questions, thus providing a
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quick, efficient, and noninvasive way to help them decide whether or not a patient requires a full cognitive evaluation. This
approach has the potential benefits of making time and cost savings for health service providers and avoiding stress created
through unnecessary cognitive assessments in low-risk patients.

(JMIR Med Inform 2020;8(9):e20995) doi: 10.2196/20995
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Introduction

Globally, populations are aging. By 2050, it is estimated that
more than 2 billion people will be aged over 60 years [1].
Cognitive function generally declines with age and ranges in
severity from mild cognitive impairment (MCI) to dementia.
MCI can be defined as cognitive decline greater than that
expected for an individual’s age and education level, but it does
not interfere with activities of daily living, whereas dementia
profoundly impacts normal functioning [2,3]. Dementia
currently affects 50 million people worldwide, and it is estimated
that this will increase to 152 million by 2050. The annual cost
of dementia is estimated at US $1 trillion and is expected to
more than double by 2030 [4]. Therefore, strategies that promote
better brain health and well-being in older age are an urgent
public health priority.

Alzheimer disease is the most common form of dementia, with
other forms including vascular dementia, dementia with Lewy
bodies, frontotemporal dementia, and mixed dementia. Risk
factors for dementia are disease dependent but commonly
include age, genetics and medical conditions including
cardiovascular disease and diabetes, diet, lifestyle, and
environmental factors [5]. An important recent report
highlighted the complexity of dementia and the potential to
prevent or delay the onset of the disease through interventions
targeted at modifiable risk factors [6]. In particular, nutrition
has been identified as a key area of interest, and emerging
evidence links lower levels of certain vitamins with cognitive
dysfunction in older adults, whereas certain dietary patterns and
components appear to have protective roles in maintaining
cognitive health [7].

The application of data mining within health care has become
increasingly popular, driven particularly by the large amount
of complex data available that test the capabilities of traditional
statistical approaches [8]. In health care, as in other areas, data
mining has provided a means of accessing and analyzing large
volumes of data to better inform and drive change. Classification
models, in particular, have been utilized extensively in the
understanding of MCI. These models can help us to understand
patterns in the behavior of data in terms of diagnosing MCI,
specifically in the consideration of key features pertaining to a
diagnosis of impairment [9,10] or predicting the progression of
the impairment [11]. Furthermore, models have been developed
to apply a more objective approach to the MCI diagnosis [12],
not to undermine but rather to support a clinician’s analysis
[13]. Na c [14] investigated the use of noninvasive,
easy-to-collect variables that are commonly collected in
community health care settings such as sociodemographic,
health, functional, and interpersonal variables, for the prediction

of cognitive impairment among community-dwelling older
adults, using the Korean Longitudinal Study of Aging (KLoSA)
data set [15] and a gradient boosting machine classifier.

Many studies apply machine learning approaches to the popular
Open Access Series of Imaging Studies [16], Alzheimer Disease
Neuroimaging Initiative (ADNI) [17], and Australian Imaging
Biomarkers and Lifestyle Flagship Study of Aging (AIBL) [18]
data sets consisting of neuroimaging data (eg, magnetic
resonance imaging [MRI] and positron emission tomography
scan data) from participants ranging from no cognitive
impairment to MCI to Alzheimer disease [19]. These data sets
also include a range of demographic, biomarker, clinical, and
cognitive assessment data. Ding et al [20] used a Bayesian
network approach for the classification of Alzheimer disease
with heterogeneous features from the AIBL data set and
demonstrated that machine learning could be used to select
features and their appropriate combinations that are relevant for
Alzheimer disease severity classification with high accuracy.
Korolev et al [21] used a kernel-based classifier and the ADNI
data set to develop a prognostic model for predicting
MCI-to-dementia progression over a 3-year period.

The aim of our study is to compare the selection of data analytics
techniques to identify determinants of cognitive health in
community-dwelling older adults using existing data from the
Trinity-Ulster and Department of Agriculture (TUDA) study
(ClinicalTrials.gov identifier: NCT02664584). The TUDA study
was designed to investigate nutritional, health, and lifestyle
factors in the development of diseases related to aging, including
dementia. A range of analytical models on the data were
developed to determine factors that may predict poorer cognitive
performance and cognitive decline over time, assessed using
an in-depth neuropsychiatric test.

Methods

Cross-Industry Process for Data Mining Methodology
In this study, the widely used cross-industry process for data
mining (CRISP-DM) research methodology was adopted [22].
CRISP-DM has 6 main steps: business understanding, data
understanding, data preparation, modeling, evaluation, and
deployment. In the business understanding phase, the objective
of this study was to use classification techniques to identify the
key patient predictors considered most important in the
classification of cognitive dysfunction, which itself is a predictor
of dementia. In the data understanding phase, the data quality
was examined to understand data collection methods and the
features contained within the TUDA data set, as described in
the next section (The Data). In the data preparation phase, the
TUDA data set was preprocessed to cleanse the data set and
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select features relevant to the modeling phase. Feature selection
methods and the results of feature selection are described in the
subsequent sections (The Data and Feature Selection sections
in Methods and the Feature Selection section in Results). In the
modeling phase, a number of machine learning modeling
techniques were selected and applied to the prepared data and
their parameters were calibrated to optimal values to increase
the knowledge extracted from the data (described in the Machine
Learning Techniques section in Methods and the RBANS
Classification and Classifying Cognitive Decline Using the Rate
of Change in the RBANS Score sections in Results). Upon
building the models that produced the highest quality knowledge
from the data analysis perspective, the models were thoroughly
evaluated to ensure robustness and achievement of the business
objectives. The knowledge gained from the models was then
presented to clinical experts in a way that could be used and
understood.

The Data
The TUDA cohort provides detailed nutrition and health data,
along with related lifestyle, clinical, and biochemical details,
on a total of 5186 community-dwelling older adults aged 60 to
102 years, making this cohort one of the most comprehensively
characterized cohorts of its kind for aging research
internationally. With an overall goal to address the prevention
of age-related diseases, the TUDA study is aimed at
investigating nutrition and related factors in the development
of common diseases of aging. TUDA study participants were
recruited between 2008 and 2012 from hospital outpatient or
general practice clinics in the Republic of Ireland or Northern
Ireland via standardized protocols for participant sampling,
assessment, and data recording and with a centralized laboratory
analysis. In brief, the inclusion criteria for the TUDA study
were being born on the island of Ireland, aged >60 years, and
not having an existing diagnosis of dementia. Nonfasting blood
samples were collected from all participants, and a wide range
of parameters including routine biochemistry and hematological

profiles, along with biomarkers of micronutrient status, were
measured. A comprehensive health and lifestyle questionnaire
was administered as part of the 90-min interview to capture
medical and demographic details, along with comprehensive
information on medication and vitamin supplement usage.
Physiological function tests, blood pressure, bone health
(dual-energy x-ray absorptiometry scans), and cognitive function
tests were also performed. A subset of approximately 19.03%
(987/5186) of participants were reassessed 5 to 7 years after
their initial assessment to investigate the progression of risk
factors and disease over time.

A summary of the characteristics of the subset of the TUDA
cohort (n=2869) analyzed in this study is shown in Table 1.
Preprocessing and feature selection performed on the original
data set to reach this subset of data are described in the Feature
Selection sections of the Methods and Results sections.

Cognitive function was assessed at both time points using 3
assessment tools, the Mini-Mental State Examination (MMSE),
the Frontal Assessment Battery (FAB), and RBANS, and the
rate of cognitive decline was calculated over the 5- to 7-year
follow-up period. For the purposes of this study, the cognitive
function outcome indicator is categorized based on RBANS.
RBANS is an age-adjusted and sensitive neuropsychiatric battery
for assessing global cognitive function [23]. This tool has also
been validated to assess specific cognitive domains within the
brain, including immediate and delayed memory, visual-spatial,
language, and attention, which are combined to provide a total
score, with lower scores generally indicative of poorer cognitive
performance.

The rate of RBANS change over the 5- to 7-year period between
the initial assessment and the follow-up assessment was
computed as the difference between a participant’s RBANS
score at each sampling point, normalized to account for the time
between each assessment, where this can differ by up to 2 years
across participants (Figure 1).
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Table 1. General characteristics of the Trinity-Ulster and Department of Agriculture study participants.

Females (n=1678)Males (n=1191)Characteristics

72.2 (7.8)72.1 (7.8)Age (years), mean (SD)

16.1 (2.8)16.3 (3.3)Education (years)a, mean (SD)

Health and lifestyle

28.7 (5.7)28.9 (4.3)BMI (kg/m2), mean (SD)

0.88 (0.07)0.97 (0.07)Waist-to-hip ratio, mean (SD)

24.9 (3.5)25.0 (4.1)Instrumental activities of daily living, mean (SD)

23.1 (1.7)23.3 (1.6)Physical self-maintenance scale score, mean (SD)

13.0 (8.0)12.9 (9.1)Timed Up and Go (seconds), mean (SD)

632 (37.7)260 (21.8)Living alone, n (%)

194 (11.6)122 (10.2)Current smoker, n (%)

2.9 (6.7)8.8 (14.6)Alcohol (units/week), mean (SD)

426 (25.4)291 (24.4)Socioeconomically most deprived, n (%)

Neuropsychiatric assessment

27.9 (1.4)27.8 (1.4)MMSEb score, mean (SD)

88.9 (15.2)87.3 (14.5)RBANSc score, mean (SD)

168 (10.0)133 (11.2)RBANS class=“low” (target), n (%)d

1510 (90.0)1058 (88.8)RBANS class=“high” (target), n (%)d

15.9 (2.1)15.7 (2.2)FABe score, mean (SD)

6.1 (7.7)4.8 (6.2)Depression CES-Df score, mean (SD)

3.5 (3.8)2.6 (3.2)Anxiety (HADSg score), mean (SD)

Clinical measures

6.9 (3.3)7.1 (3.6)White cell count (109/L), mean (SD)

13.0 (1.3)14.2 (1.5)Hemoglobin (g/DL), mean (SD)

90.6 (5.1)90.7 (5.5)Mean corpuscular volume (FLh), mean (SD) 

265 (66.9)229 (59.0)Platelet count (109/L), mean (SD) 

6.7 (2.3)7.2 (2.9)Urea (mmol/L), mean (SD)

79 (22.4)98 (31.0)Creatinine (μmol/L), mean (SD)

42 (3.4)42 (3.7)Albumin (g/L), mean (SD)

34 (36.0)43 (47.5)Gamma GT (U/L), mean (SD)

139 (3.2)140 (5.1)Sodium (mmol/L), mean (SD)

4.2 (0.4)4.3 (0.5)Potassium (mmol/L), mean (SD)

2.3 (0.1)2.3 (0.1)Calcium (mmol/L), mean (SD)

1.1 (0.2)1.0 (0.2)Phosphate (mmol/L), mean (SD)

82 (25.7)82 (34.2)Alkaline phosphatase (U/L), mean (SD)

2.58 (0.9)2.23 (0.8)Low-density lipoprotein (mmol/L), mean (SD)

1.55 (0.4)1.23 (0.4)High-density lipoprotein (mmol/L), mean (SD)

1.62 (1.0)1.78 (1.0)Triglycerides (mmol/L), mean (SD)

5.5 (11.9)6.1 (11.1)C-reactive protein (mg/L), mean (SD)

5.9 (0.7)6.0 (1.0)Glycated hemoglobin (%), mean (SD)

47.2 (31.9)45.2 (30.8)Parathyroid hormone (pg/mL), mean (SD)
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Females (n=1678)Males (n=1191)Characteristics

67.8 (22.6)77.2 (25.3)Glomerular filtration rate (mL/min), mean (SD)

Nutritional biomarkers

1100 (582.7)1053 (591.1)Red blood cell folate (nmol/L), mean (SD)

296 (277.3)267 (191.0)Serum vitamin B12 (pmol/L), mean (SD)

81.5 (69.7)74.1 (53.2)Plasma vitamin B6 (nmol/L), mean (SD)

1.34 (0.2)1.35 (0.2)Riboflavin (EGRaci), mean (SD)

14.1 (5.1)15.1 (5.9)Total plasma homocysteine (μmol/L), mean (SD)

56.0 (30.1)51.6 (25.9)Total vitamin D (nmol/L), mean (SD)

aEducation refers to the age of stopping formal education.
bMMSE: Mini-Mental State Examination.
cRBANS: Repeatable Battery for the Assessment of Neuropsychological Assessment.
dRBANS score <70 is assigned class low and an RBANS score ≥70 is assigned class high.
eFAB: Frontal Assessment Battery.
fCES-D: Centre for Epidemiological Studies Depression.
gHADS: Hospital Anxiety and Depression Scale.
hFL: femtolitre.
iEGRac: erythrocyte glutathione reductase activation coefficient, with a higher EGRac value indicating poorer riboflavin status.

Figure 1. Calculating Repeatable Battery for the Assessment of Neuropsychological Status rate of change over a 5- to 7-year period between initial
assessment and follow-up assessment, normalized to account for the time between each assessment.

The data set initially contained 525 variables. During
preprocessing, the data were cleansed to detect and correct
inaccurate values, identify missing values and ensure consistent
coding of these, ensure consistent coding of categorical
variables, identify spelling and coding inconsistencies and
correct these, transform text variables into categorical variables
where possible, ensure numeric values fell within an appropriate
and accurate range, check for consistency among dependent
variables and correct any errors, and finally check for duplicate
data and remove any redundancy. Normalization was carried
out on the data table, including nonloss decomposition to
decompose the large data table into smaller tables, transforming
composite attributes into separate attributes, transforming
multivalued attributes, repeating columns into separate tables,
and recoding text attributes to categorical attributes where
possible. This process reduced the number of variables to 345
within the data set. These variables were a combination of text,
categorical, and numerical variables.

Feature Selection
Dimension reduction is an important stage for understanding
information in a data set. Typical dimension reduction
techniques, such as principal component analysis (PCA) [24],
describe all the numerical variables contained within a data set
in terms of a number of linear combinations (fewer than the
original number of features) of these features. Although a widely
used and appreciated method for reducing the number of
dimensions within a data set, PCA is only valid for numerical
features. In addition, a more transparent feature selection method

is often required to remove redundant features of various types
to reduce the size of the data set without losing potentially
valuable information. Although a range of feature selection
techniques exist because of the nature of the features in the
TUDA data set and the prior knowledge that a large number of
variables were likely to be highly correlated, a correlation
analysis and clustering were used in this study to allow highly
correlated features to be determined and redundant features to
be removed. These methods also helped us to discuss, evaluate,
and agree on the features to be retained in collaboration with
the data gatekeepers and expert clinicians who had in-depth
knowledge of the data. Further feature selection was not carried
out as we elected to retain as many features as possible for use
in training the classifiers. This section describes the feature
selection techniques performed, and the results of feature
selection are described in the Results section.

Manual Feature Selection
Manual feature selection was performed to remove features
containing large amounts of missing data and, therefore,
considered not useful for the analysis. Free-text variables that
could not be encoded were also removed. On the basis of expert
clinical knowledge, features deemed irrelevant to the study were
removed, as well as a number of subjective features where a
comparable, objective laboratory-obtained feature existed in
the data set.
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Correlation and Association
A correlation analysis is necessary before the development of
classification models for 2 primary reasons: “Algorithms might
‘overfit’ predictions to spurious correlations in the data;
multicollinear, correlated predictors could produce unstable
estimates” [25] and “Perfectly correlated variables are truly
redundant in the sense that no additional information is gained
by adding them” [26]. In other words, as many machine learning
algorithms rely on linearly independent variables, strongly
correlated variables must be evaluated and removed to avoid
unreliable results. Moreover, 2 variables that follow the same
behavior add little to the information gained by the data set and
thus are considered redundant. The correlation analysis allows
the determination of highly correlated variables, which may
undermine the consequential data analysis results. Owing to the
difference in categorization of the variables within the data set,
correlation coefficients were calculated for numerical-numerical
pairs, whereas the strength of association was necessary for
categorical-categorical variables and categorical-numerical
variables. Correlations between numerical variables were
calculated using the Spearman nonparametric correlation
coefficient [27], the strength of association between categorical
variables was calculated using the Cramér V statistic [28], and
the coefficient of determination (R2) was calculated between
categorical and numerical variables [29].

Clustering
Clustering is useful in feature selection [26] to analyze the data
to find structural patterns. Clustering can be used together with
correlation analysis to identify those variables that behave in a
similar manner; thus, the information offered by the variables
may prove redundant. Clustering of variables can take 1 of 2
forms: hierarchical, which outputs an informative hierarchy,
and nonhierarchical, which divides the data into clusters, within
which the variables may behave similarly. Owing to the nature
of the information this study seeks to derive, the focus was
placed on hierarchical clustering, illustrated specifically in the
form of tree structures or dendrograms.

Ascendant hierarchical clustering can use a mixture of both
numerical and categorical variables to arrange variables into

homogenous clusters, that is, variables that are strongly related
to each other [30]. The algorithm for finding these related
clusters follows the concepts of PCA and multiple
correspondence analysis (MCA). In PCA and MCA, the data
set is analyzed to find new linearly independent variables to
describe the same set of data. In this hierarchical clustering,
these new synthetic variables are used as the center points of
the clusters, and each original variable is then grouped according
to its similarity to the cluster center, either using the sum of the
correlation ratio, for numeric variables, or the squared
correlation, for categorical variables.

Machine Learning Techniques
Machine learning techniques are regularly employed for
detecting patterns and dependencies within data, such as within
health care data. Specifically, machine learning algorithms can
be used to look for combinations of variables and generate rules
within data that can be used to reliably predict outcomes [25].
This style of problem relies on classification algorithms, where
predictor variables are used to predict an outcome or a class
variable. These predictions are based on a training sample of
the data, usually consisting of a random sample of about 70%
to 80% of the available data. The developed model comprises
rules based on these training data and then tested against the
remaining data (Figure 2). The training procedure is repeated
on a number of different subsets of the data to reduce the
likelihood of overfitting the model. In this study, 10-fold
cross-validation was used to measure the performance of
classifiers. Initially, the data were split into a training set (75%)
and an evaluation set (25%). The models were trained using the
training set with 10-fold cross-validation applied (with a
90%/10% train/test split at each fold). The modeling techniques
of decision trees, random forests, and Naive Bayes were selected
for their ease of interpretability. It is crucial that the results of
modeling in this study can be explained to clinical experts. The
individual algorithms were developed using the R caret package,
specifically using the train and predict functions. The evaluation
data set was used to evaluate the performance of the model
found to be optimal during training for each of the 3 respective
techniques considered.

JMIR Med Inform 2020 | vol. 8 | iss. 9 | e20995 | p. 6http://medinform.jmir.org/2020/9/e20995/
(page number not for citation purposes)

Rankin et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Model development and testing protocol.

Decision Tree
Decision trees are one of the most common machine learning
algorithms when using a combination of continuous and
categorical variables, chosen for their computational efficiency
and readability. The Classification and Regression Tree (CART)
[31] algorithm, in particular, lends itself well to explanatory
knowledge discovery [32] due to its transparency. CART
decision trees are developed using a top-down recursive
algorithm, where the data set is split into increasingly smaller
subsets according to some predetermined metric, most
commonly using either the Gini impurity index or a permutation
importance measure. The measures used are described below.
The rpart implementation of the CART decision tree algorithm
in the R caret package was used in this study. This
implementation automatically applies pruning, choosing a range
of complexity parameters and automatically selecting the
optimal model using the complexity parameter that provides
the highest accuracy.

The resulting decision tree easily translates itself to a series of
rules that can be used to classify the test data. The advantages
of using a decision tree classifier lie in its ease of application,
particularly as both numerical and categorical input variables
require little to no preprocessing; its transparency for
interpretation, as the resulting tree can be explained using
Boolean logic; and its computational efficiency, particularly
with large data sets. In addition, decision tree classification does
not require domain knowledge or parameter setting [32].
However, traditional decision trees are also the least robust of
the machine learning classification methods, as they are prone
to overfitting and therefore rely substantially on the training

data. Often, a small change in the training data can result in
large changes in the developed tree. These shortcomings can
be addressed using the random forest algorithm.

Random Forest
The random forest algorithm [33] works in a similar manner to
decision trees, but where the CART algorithm results in a single
tree, the random forest algorithm results in a forest of trees.
Each of the maximal trees within the random forest will have
been developed using a random subset of the predictor variables
[34]. Each split within the tree is then calculated according to
a given performance metric from only within this subset of
variables. Typically, many trees are considered, thus reducing
the prediction error, as the model prediction will reflect the
average prediction across all trees. As a result, the random forest
algorithm is considered robust, flexible, and highly suited to
large data sets [35]. The random forest algorithm in the R caret
package was used in this study. This implementation chooses
a range of mtry parameters, where mtry is the number of
variables available for splitting at each tree node, which have
a strong influence on predictor variable importance estimates
[36]. The mtry parameter providing the highest accuracy was
used to select the optimal model.

Naïve Bayes
The Naïve Bayes algorithm for classification is based on Bayes’
theorem, which describes the most likely outcome (Y) based
on k number of observations (X={x1,x2,…,xk}). This can be
written as P(Y|X) and, as the algorithm is naïve and all variables
are considered independent, is calculated using the equation in
Figure 3.
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Figure 3. Naïve Bayes algorithm.

The probability of an outcome P(Y); the probability of an
observation being described by X, P(X); and the probability of
an observation being described by X, given that they can be
classed by Y, P(X|Y), can all be estimated using the given data
set. For its use as a classifier, an observation is classified
according to the most likely class based on the random variables
the observation describes. A benefit of the Naïve Bayes classifier
is its theoretical low error rate; however, based on the underlying
independence of the variables, in practice, this may not be the

case. The Naïve Bayes algorithm in the R caret package was
used in this study.

Importance and Accuracy Measures

Gini Impurity Index
The Gini impurity index describes the likelihood of an incorrect
classification using a random variable (var) and is described
mathematically as shown in Figure 4.

Figure 4. Gini impurity index.

Here pi is the probability of a correct classification according
to m classes. By considering the variables resulting in a minimal
Gini impurity index, this metric will therefore determine the
best (most pure) variables to use to split the training data until
a convergence criterion is met.

Permutation Importance
Permutation variable importance [33] is calculated by using the
effect the variable has on the overall prediction performance.
This performance can be predicted using the out-of-bag
prediction error, calculated by taking the mean prediction error
rate of those trees that did not include the specific variable [35].

Performance Evaluation
To compare the performance of each classification model, a
variety of evaluation metrics were used. The accuracy, precision,
recall, and F1 scores were computed. Precision, recall, and F1

scores take account of true and false positives and negatives,
whereas accuracy considers only true-positives and
true-negatives [37].

Results

Feature Selection

Manual Selection
Initially, 6 features deemed irrelevant for analysis were removed,
including participant identification numbers and cohort category
(which described the clinic from which the participants were
selected). A total of 9 free-text variables and 9 variables with
inconsistent questioning were removed. In addition, 94
subjective features were removed in favor of more objective
laboratory-obtained results. Several of the removed subjective
features had high numbers of missing values; therefore, removal
of these in favor of subjective features assisted in handling
missing data while ensuring that there was no information loss
within the data set and data duplication was also minimized.
For example, nutritional status based on blood analysis (eg,
measurement of key vitamin biomarkers) was retained over
self-reported dietary intake (eg, supplement and fortified food
use).

Correlation and Association
Initial investigation into cognitive function with the TUDA data
set, as measured using the RBANS score, highlights that as
expected RBANS decreases with age (Figure 5).
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Figure 5. Mean Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) score as a function of participant’s age. The graph
shows a general decrease in the RBANS score as age increases. RBANS scores have been averaged by age; thus, each point represents the average
score for any particular age. One outlier existed for age=86. This was removed and the R value recalculated accordingly.

Correlation and association analyses were carried out. The key
results of this analysis are shown in (Multimedia Appendix 1).
We observed a relationship between variables concerning
follow-up questions within the questionnaire (eg, medication
use and duration of use). On the basis of this, 41 features related
to follow-up questions were removed. We also observed a high
correlation between the use of specific medications (eg,
bisphosphonate medications: Risedronate, Ibandronic acid, and
Etidronate). These medications could be grouped into bone-
and hormone-related categories, and therefore, we amalgamated
each subset into a new variable. Specifically, 2 new variables
were added for bone- and hormone-related medication,
encompassing many types of bone medications, including
bisphosphonates and hormone-related medications, from the

original data set. This resulted in the removal of 30 features and
the addition of 2 new features. Furthermore, scores for each
assessment element of RBANS were removed and only the total
score was retained. The total RBANS score was later used as
the target variable in classification.

We also removed the other neuropsychiatric test results (MMSE,
FAB, Hospital Anxiety and Depression Scale, Centre for
Epidemiological Studies Depression Scale) and functional test
results (instrumental activities of daily living [IADL] and the
physical self-maintenance scale [PSMS]) from the data set, as
they are clinical assessment tools as opposed to individual
predictor variables. This resulted in the removal of 72 additional
features. The correlation matrix between these scores is shown
in Figure 6.
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Figure 6. Correlation matrix using the Spearman (nonparametric) coefficient between participant test scores, ignoring observations with missing data.
Variable descriptors are as follows: 1=Hospital Anxiety and Depression Scale total score; 2=depression questionnaire total score; 3=Mini-Mental State
Examination total score; 4=Frontal Assessment Battery total score; 5=Repeatable Battery for the Assessment of Neuropsychological Status total score;
6=Physical Maintenance Scale total score; 7=instrumental activities of daily living total score.

The resulting subset of features following this stage of selection
reduced the data set from 345 variables to 69 plus the class
variable (RBANS score; Multimedia Appendix 2).

Clustering
A cluster analysis was carried out using the ClustOfVar package
within R Studio [30] to determine variable clusters and the
strengths of their relationships. As expected, the scores from

the clinical assessments, RBANS and its subcomponent tests,
FAB and MMSE, are closely related (Figure 7). The
participant’s age was closely related to kidney function, as
indicated by the glomerular filtration rate (GFR), and together
these form a variable cluster with the scores from the physical
diagnostic tests of IADL, TUG, and PSMS indicating a
relationship between these variables (Figure 8).
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Figure 7. Hierarchical clustering of variables depicted as a dendrogram showing strong relationships between clinical assessment scores from the
RBANS, FAB, and MMSE assessments. The variable descriptors are as follows: MMSE_score, Mini-Mental State Examination total score; FAB_score,
Frontal Assessment Battery total score; RBANS_index_score_I, Repeatable Battery for the Assessment of Neuropsychological Status (RBANS)
immediate memory score; RBANS_index_score_II, RBANS visuospatial constructional score; RBANS_index_score_III, RBANS language score;
RBANS_index_score_IV, RBANS attention score; RBANS_index_score_V, RBANS delayed memory score; RBANS_total_score, RBANS total score.

Figure 8. Hierarchical clustering of variables depicted as a dendrogram showing the close relation between a participant’s age and kidney function
(glomerular filtration rate [GFR]), which together form a cluster with the physical diagnostic tests of IADL, TUG, and PSMS. The variable descriptors
are as follows: age, participant’s age; GFR, kidney function; Driving_status, driving status; PSMS_score, Physical Maintenance Scale total score; TUG
score, Timed Up and Go score; IADL_score, Instrumental Activities of Daily Living total score.

JMIR Med Inform 2020 | vol. 8 | iss. 9 | e20995 | p. 11http://medinform.jmir.org/2020/9/e20995/
(page number not for citation purposes)

Rankin et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Following feature selection, the data set contained 69 features
and 5186 observations; however, missing data still remained.
To retain as much data as possible while minimizing the chance
of statistical bias, participant records were imputed by replacing
missing values with the average or expected value, in this case,
according to the participant’s age and gender. As in other studies
on the RBANS score [38], participants with visual (224
participants) or arthritic problems (1445 participants) were
omitted as they would have been hindered from carrying out
certain tasks within the test, and thus, their results may be
unreliable, as were those displaying an MMSE score of <24
(647 participants). Upon removing the relevant records, 2869
observations remained.

RBANS Classification
Classification models were utilized for 2 purposes: to discover
if a model could be developed to predict a low RBANS score,
representing poorer cognitive function, from the TUDA data
set and to determine if the developed model could be used to
identify key health, nutritional, and environmental predictors
of these low scores.

The target variable in this analysis was the RBANS total score.
For this analysis, the RBANS score was categorized using a
data-driven clustering approach to find 2 natural groupings
within the data identifying those with poorer cognitive
performance as having an RBANS score <70 (assigned class
low) and an RBANS score ≥70 was indicative of normal
cognitive performance (assigned class high).

Class imbalance [39] within the data set was resolved using
oversampling, in which a random sample of the smaller class
was replicated until the class sizes were equal.

The supervised modeling techniques of decision trees, random
forest, and Naïve Bayes were applied with 69 predictor variables
(listed in Multimedia Appendix 2). The data set (n=2869) was
split into a training set (2152/2869, 75%) and an evaluation set
(717/2869, 25%). The models were trained using the training
set with 10-fold cross-validation applied, and the results are
shown in Table 2. For the decision tree model, the complexity
parameter value of 0.020 for pruning was found to produce the
highest accuracy. For the random forest model, the mtry value
of 58 was found to produce the highest accuracy.

Table 2. Classification of the Repeatable Battery for the Assessment of Neuropsychological Status score performance measures when models were
trained with 10-fold cross-validation (training set size=2152).

F1, mean (SD)Recall, mean (SD)Precision, mean (SD)Accuracy, mean (SD)Classification technique

0.709 (0.028)0.643 (0.051)0.795 (0.037)0.737 (0.020)Decision tree

0.667 (0.000)1.000 (0.000)0.500 (0.000)0.500 (0.000)Naïve Bayes

0.990 (0.006)0.981 (0.011)1.000 (0.000)0.990 (0.006)Random forest

The models were then evaluated using the held out 25%
evaluation data set, and the accuracy of these models ranged
from 60.4% using the decision tree to 87.7% using the random
forest algorithm (Table 3). The random forest algorithm
performed best in this comparison in terms of both accuracy

and F1 score, with the decision tree algorithm performing the
worst. This is expected in terms of robustness, specifically
pertaining to problems with overfitting by the decision tree
algorithm, which has been rectified somewhat using multiple
trees within the random forest.

Table 3. Classification of the Repeatable Battery for the Assessment of Neuropsychological Status score performance measures when applied to the
evaluation data set (training set size=2152; evaluation set size=717).

F1 scoreRecallPrecisionOverall accuracyClassification technique

0.7250.5960.9260.604Decision tree

0.9340.1000.8760.876Naïve Bayes

0.9340.9920.8820.877Random forest

The key predictors of the RBANS total score in the decision
tree were as follows: participants’ scores from the TUG
functional mobility test, representing the time a participant takes
to get out of a chair, walk 3 m, turn around, and walk back to
return to his or her original seated position; the age at which
the participant stopped education; whether any family members
were concerned about the participant’s memory; and the
participant’s GFR, as shown in Figure 9. This decision tree

predicted that a person who took under 13 seconds to perform
the TUG test and stopped education after 16 years of age was
classified as a high RBANS scorer (ie, indicative of normal
cognitive performance). The decision tree classification model
also highlights the importance of the TUG test alone; if a
participant took longer than 13 seconds to perform the test, he
or she was most likely to be a low scorer, indicative of poorer
cognitive performance.
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Figure 9. Decision tree classifier of the Repeatable Battery for the Assessment of Neuropsychological Status score. GFR: glomerular filtration rate.

Similarly, the Naïve Bayes and random forest algorithms also
detect the TUG score, the age at which the participant stopped
education, and the participant’s age as being highly informative
features as shown in Figures 10 and 11 (see Multimedia
Appendix 2 for feature descriptions) for Naïve Bayes and

random forest models, respectively, with the Naïve Bayes
algorithm adding a participant’s driving status and the random
forest algorithm adding GFR to form the top 4 informative
variables within these respective algorithms.

Figure 10. The 20 most important features for classification of the Repeatable Battery for the Assessment of Neuropsychological Status score as
detected using feature permutation using a Naïve Bayes classifier. GFR: glomerular filtration rate; LDL: low-density lipoprotein; TUG: Timed Up and
Go.
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Figure 11. The 20 most important features for classification of the Repeatable Battery for the Assessment of Neuropsychological Status score as
detected using feature permutation using a random forest classifier. GFR: glomerular filtration rate; HbA1c: glycated hemoglobin; LDL: low-density
lipoprotein; TUG: Timed Up and Go.

The informative nature of the 4 most important features
determined by the most accurate classifier (random forest), as
shown in Figure 11, was confirmed when these algorithms were
rerun using only this subset of 4 features. In addition, 10-fold
cross-validation was applied to train the model on the training
data set (n=2152), with the results shown in Table 4. For the
decision tree model, the complexity parameter value of 0.010
for pruning was found to produce the highest accuracy. For the
random forest model, the mtry value of 2 was found to produce
the highest accuracy. The models were then evaluated using the

held out 25% evaluation data set. Training on the 4 most
important features as determined by the random forest model
resulted in a decrease in accuracy for the random forest model
from 87.7% to 80.1% (Table 5). A larger reduction in accuracy
was observed for the Naïve Bayes model, decreasing from
87.6% to 69.3%, whereas the decision tree model increased in
accuracy from 60.4% to 72.5% when trained on this reduced
data set compared with training on the original data set
containing 69 variables.

Table 4. Classification of the Repeatable Battery for the Assessment of Neuropsychological Status score performance measures when models trained
with 10-fold cross-validation (training set size=2152) and the 4 key variables: (1) age at which the participant stopped education, (2) the Timed Up and
Go score, (3) the glomerular filtration rate measure, and (4) the participant’s age.

F1, mean (SD)Recall, mean (SD)Precision, mean (SD)Accuracy, mean (SD)Classification technique

0.677 (0.020)0.655 (0.045)0.702 (0.026)0.688 (0.020)Decision tree

0.640 (0.018)0.545 (0.026)0.775 (0.021)0.693 (0.012)Naïve Bayes

0.923 (0.015)0.857 (0.026)1.000 (0.000)0.929 (0.013)Random forest
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Table 5. Classification of the Repeatable Battery for the Assessment of Neuropsychological Status score performance measures when models trained
using the 4 key variables: (1) age at which the participant stopped education, (2) the Timed Up and Go score, (3) the glomerular filtration rate measure,
and (4) the participant’s age when applied to the evaluation data set (training set size=2152; evaluation set size=717).

F1 scoreRecallPrecisionOverall accuracyClassification technique

0.8190.7320.9280.725Decision tree

0.7010.5570.9460.598Naïve Bayes

0.8830.8890.8780.801Random forest

Classifying Cognitive Decline Using the Rate of Change
in the RBANS Score
A subset (n=987) of TUDA study participants was reassessed
using an identical protocol 5 to 7 years after the initial
assessment. The result of this follow-up assessment enabled the
creation of a new variable to add to the original TUDA data set
for these 987 participants; the rate of change of the RBANS
score (calculated using the equation in Figure 1). This variable
would act as a measure of predicted cognitive decline (or
improvement) over the 5- to 7-year follow-up period. The same
classification models of decision tree, Naïve Bayes, and random
forest were applied to the TUDA data (n=987), using the new
rate of RBANS change as the classification variable. If the rate
of change of a participant’s RBANS score was calculated as

more than one half standard deviation below the mean rate of
change of the RBANS score across the sample of participants,
the participant was considered to have shown acute decline over
time, otherwise the change in RBANS was considered normal
or expected. The variable was normalized to adjust for differing
periods of time between the first and second RBANS
assessments (between 5 and 7 years) among participants. The
data set (n=987) was split into a training set (740/987, 75%)
and an evaluation set (247/987, 25%). The models were trained
using the training set with 10-fold cross-validation applied, and
the results are shown in Table 6. For the decision tree model,
the complexity parameter value of 0.035 for pruning was found
to produce the highest accuracy. For the random forest model,
the mtry value of 2 was found to produce the highest accuracy.

Table 6. Classification of the Repeatable Battery for the Assessment of Neuropsychological Status score performance measures when models trained
with 10-fold cross-validation (training set size=740).

F1, mean (SD)Recall, mean (SD)Precision, mean (SD)Accuracy, mean (SD)Classification technique

0.582 (0.083)0.571 (0.151)0.613 (0.053)0.603 (0.045)Decision tree

0.665 (0.007)0.997 (0.009)0.499 (0.008)0.499 (0.008)Naïve Bayes

0.962 (0.028)0.946 (0.031)0.978 (0.035)0.962 (0.026)Random forest

The models were then evaluated using the held out 25%
evaluation data set, and the results are shown in Table 7.
Although the accuracy of these classification models is lower
than that reported for the classification of the RBANS score,
approximately 70% versus 90% for random forest classifiers,
it nevertheless indicates the possibility of using our existing
variables for predicting a perhaps pathological rate of cognitive

decline to a reasonable level of accuracy. The decision tree
performed the poorest; however, the information it provides
(Figure 12) indicates that the TUG test score is again the most
informative attribute, followed by the participant’s blood
measures of total plasma homocysteine, vitamin B6 biomarker
pyridoxal-5-phosphate (PLP), and glycated hemoglobin.

Table 7. Classification performance for rate of change of the Repeatable Battery for the Assessment of Neuropsychological Status score when applied
to the evaluation data set (training set size=740; evaluation set size=287).

F1 scoreRecallPrecisionOverall accuracyClassification technique

0.6640.6050.7350.547Decision tree

0.8501.0000.7390.739Naïve Bayes

0.8220.9330.7350.702Random forest

JMIR Med Inform 2020 | vol. 8 | iss. 9 | e20995 | p. 15http://medinform.jmir.org/2020/9/e20995/
(page number not for citation purposes)

Rankin et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 12. Decision tree classifier of rate of change of the Repeatable Battery for the Assessment of Neuropsychological Status score. PLP: vitamin
B6 marker pyridoxal-5-phosphate.

Furthermore, using permutation importance measures (Figures
13 and 14, see Multimedia Appendix 2 for feature descriptions),
it has been indicated that the same key variables for the
classification of RBANS scores are no longer of such importance
for the classification of rate of RBANS score change. Instead,

the blood measures of PLP (vitamin B6 biomarker) and urea,
coupled with the results of the TUG test and the participant’s
age, are likely key predictors, particularly using the (best
performing) Naïve Bayes algorithm (Figure 13).

Figure 13. The 20 most important features for predicting rate of the Repeatable Battery for the Assessment of Neuropsychological Status change as
detected using feature permutation using a Naïve Bayes classifier. Gamma GT: Gamma-glutamyl transferase; GFR: glomerular filtration rate; TUG:
Timed Up and Go.
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Figure 14. The 20 most important features for predicting rate of the Repeatable Battery for the Assessment of Neuropsychological Status change as
detected using feature permutation using a random forest classifier. Gamma GT: Gamma-glutamyl transferase; GFR: glomerular filtration rate; HDL:
high-density lipoprotein; TUG: Timed Up and Go.

Discussion

Principal Findings
The results of this study indicate that modeling of a variety of
clinical, lifestyle, and sociodemographic factors using machine
learning techniques may help predict poorer cognitive function
in older people with a high level of accuracy (approximately
90%) and using a small number of noninvasive indicators. The
approach is also useful, although slightly less accurate
(approximately 70%), in predicting the rate of cognitive decline
over a 5- to 7-year period with a small number of measures
being the most influential health, nutritional, and environmental
predictors. The results are important for clinicians and health
service providers, especially at the early stages of engagement
and diagnosis of cognitive dysfunction in older patients, by
identifying those patients most in need of more intensive
investigation. Furthermore, these findings may be useful for
informing nutritional and lifestyle interventions aimed at
maintaining brain health in the adult population.

The results presented here suggest that it may be possible for a
health care professional to make an initial prediction (with a
high level of confidence) of cognitive dysfunction using only
a few short, noninvasive questions. Although the approach is
not a diagnostic instrument for detecting the presence or absence
of dementia, it has particular merit in that it could provide a
very quick, efficient, and noninvasive screening method to help
clinicians decide, at an early consultation stage, whether or not
a patient should be investigated further using more in-depth
cognitive assessment tools. Similarly, a recent study [14] used

a machine learning approach to develop a gradient boosting
machine classifier with the KLoSA data set [15], also identified
sociodemographic, functional, and health-related factors, among
others, as the most important predictors of cognitive impairment.
The authors concluded that the model could be used to screen
for cognitive impairment in a community health care setting.
Using such an approach may offer potential benefits to both
health service providers and older patients. It may provide time
and cost savings for health service providers reducing the need
for cognitive tests that are often laborious to administer (eg, it
takes approximately 30 min to complete the RBANS assessment
used in this study), and could potentially avoid testing of
low-risk patients. As a result, any unnecessary stress associated
with cognitive testing may be reduced or avoided in older adults.
This study’s results also suggest that some additional invasive
clinical measures may be required to identify those individuals
at greatest risk of future cognitive decline, providing valuable
information that could help clinicians design the most
appropriate intervention and treatment strategies for patients
on a case-by-case basis.

In the prediction of poorer cognitive performance, it is
interesting to note that, in addition to participants’ age, the
models identified noninvasive physical, behavioral, and
socioeconomic variables over invasive clinical measures as the
most influential predictors (with the exception of GFR), whereas
the opposite was true for predicting the rate of change (with
TUG being the exception). This suggests that nonclinical factors
are much better in predicting poorer cognitive performance in
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older people, while clinical measures are needed to predict
cognitive decline.

Machine learning methods produce the best classification models
and predictive outcomes based on the quality and quantity
(comprehensiveness) of the input variables. The potential for
bias still remains, for example, when a key variable is missing
from the data. Consequently, the results from the models need
to be evaluated for theoretical and, in health outcome studies,
clinical plausibility to determine their value and potential for
real-world application [40].

In this study, all 3 models identified TUG and the age at which
a participant stopped education as the most important predictive
variables. In terms of plausibility, this is encouraging, as both
these factors have been frequently identified and cited in the
literature in large cohort studies as being important risk factors
of cognitive dysfunction [6,41]. In support of these findings,
we previously reported using a geodemographic analysis of this
cohort that socioeconomic status, namely, area-based
deprivation, was an important determinant of cognitive
dysfunction alongside age, years of education, depression, and
TUG test [42]. The emergence of the age a participant stopped
education as the dominant variable from the socioeconomic
cluster is particularly interesting as it has consistently been
found to be the most important individual socioeconomic factor
related to cognitive function across the life cycle [43].
Furthermore, 2 recent population-based longitudinal studies in
the United States and the United Kingdom have indicated that
higher educational attainment, particularly in early life, could
help protect against a decline in cognitive function as people
age [44,45]. Reduced physical function, measured using tools
such as TUG, has also been associated with lower
socioeconomic status [46] and cognitive dysfunction [47]. The
TUG test reflects an individual’s strength and mobility,
inherently assessing gait, balance, and, to a lesser degree,
cognition and vision. It is a screening tool routinely used to
assist clinicians in identifying patients at risk of falling [48]. A
cutoff of ≥12 seconds is commonly applied to identify
individuals at high risk of falls, but these cutoff levels are
applied differently across various studies [49]. Within this study,
a TUG score of >13 seconds was associated with poor cognitive
performance, and a score of >8 seconds predicted future risk of
cognitive decline. These selected predictors, and their associated
split points, from the machine learning analytics, are consistent
with other studies, where poor functional performance was
correlated with lower executive function in patients with MCI
and Alzheimer disease [50,51], and is associated with future
dementia occurrence [52]. Moreover, the TUG test can be
considered, in a sense, a global measure of body function. Poor
performance has been associated with increased cardiovascular
disease and mortality as well as all-cause mortality in older
adults [53-55] and in patients with chronic kidney disease [56].
Additional predictors beyond the TUG score selected in the
decision trees as informative are also linked with poor cognitive
performance, including a measure of kidney function, GFR.
Low GFR is associated with poorer cognitive performance [57],
with a recent study reporting that individuals with impaired
kidney function had lower cognitive performance compared
with individuals with normal kidney function. Furthermore, in

frail older adults with poor TUG scores, the severity of renal
dysfunction is independently correlated with cognitive
impairment [58]. Consequently, it is clear that the various
machine learning approaches investigated in this study are
identifying appropriate factors with known links to cognitive
performance.

When the machine learning approaches were applied to identify
the predictors of the rate of cognitive decline in TUDA
participants over a 5- to 7-year follow-up period, vitamin B6
status (as measured by blood concentrations of the active form
of the vitamin, PLP) at baseline emerged, after the TUG test,
as one of the key predictors. High proportions of older adults
in population-based surveys from the United States and Europe,
including the United Kingdom, are reported to have deficient
or low B6 status [59]. Vitamin B6 has a number of important
biological roles, including immunomodulating effects. In clinical
and population-based studies, blood B6 concentrations are found
to be inversely associated with inflammatory conditions,
neurodegenerative diseases, and depression and to predict the
risk of cardiovascular disease and certain cancers [60]. Of note,
vitamin B6 and related B vitamins (namely, folate, vitamin B12,
and riboflavin) are required as cofactors in one-carbon
metabolism, a series of essential reactions involving the transfer
of one-carbon units for DNA synthesis and repair and
homocysteine metabolism and in the methylation of
phospholipids, proteins, DNA, and neurotransmitters [61]. There
is a growing body of evidence indicating that one-carbon
metabolism and related B vitamins may be important for
maintaining cognitive health during aging. The majority of
research to date has focused on folate and vitamin B12.
Although vitamin B6 has been less extensively investigated,
the findings of this study are in agreement with other
observational studies. A low vitamin B6 status has been
associated with cognitive dysfunction [62,63] and cognitive
decline [64,65] in older people. A low vitamin B6 status was
associated with cognitive decline in the Veterans Affairs
Normative Aging Study [65]. More recently, a low baseline
status of vitamin B6 was also associated with a
greater-than-expected rate of cognitive decline in a cohort of
community-dwelling older adults in Northern Ireland [64]. Of
greater importance, a number of randomized controlled trials
demonstrated that vitamin B6 supplementation in combination
with other B vitamins reduces the rate of cognitive decline in
older people [66,67] and a reduced rate of brain atrophy as
measured using MRI [68]. Furthermore, other evidence from
the TUDA study indicates that vitamin B6, along with folate
and riboflavin, is associated with an increased risk of depression
[7]. This machine learning approach has identified vitamin B6
as an important determinant of cognitive health in the TUDA
study and, whilst biologically plausible and supported by other
scientific evidence, the possible beneficial effects of vitamin
B6 on cognitive health would need to be confirmed in
randomized controlled trials.

What is very interesting from a clinical setting are the changes
in the selected predictors within machine learning models when
comparing the RBANS total score model versus the rate of
change of the RBANS score model. The age at which a
participant stopped education is a dominant predictor from the
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socioeconomic cluster in the RBANS total score model;
however, it becomes an uninformative predictor of the rate of
change of the RBANS score model and actually disappears from
the models. This implies that while this socioeconomic factor
is an important predictor of cognitive dysfunction (diagnosis),
it is not important when predicting the rate of cognitive decline.
Thus, while patients may start off on a different baseline due
to socioeconomic predictors, their rate of cognitive decline is
not influenced by these socioeconomic predictors.

Although this paper focuses on key health, nutritional, and
environmental predictors of cognitive dysfunction and rate of
change of cognitive function using machine learning techniques,
as part of the project, the research team also sought input from
personal and public involvement (PPI): patients, carers, and
clinicians. This engagement focused on causation of cognitive
dysfunction, particularly in relation to age, activity, and genetics,
considered as measures of risk. This aspect of the work in terms
of engagement with PPI, their expectations, and how these align
with the findings of this work will be the focus of future research
publications.

Limitations
This study had several strengths and limitations. The main
limitation is that the TUDA study is observational in design and
thus residual confounding and reverse causality cannot be ruled
out in this analysis. In addition, owing to the low instances of
participants with poorer cognitive performance as indicated by
an RBANS score below 70 (target class=low), this class was
underrepresented within the training data set, and therefore,
oversampling had to be performed to allow for more balanced
classifier training. This artificial approach of boosting the
number of samples was necessary for the classifier, but, coupled
with the imputation of missing data, no new information would
have been attained. This led to an imbalance between the
precision and recall accuracy metrics, although this was
remedied with the use of the F1 score. Generally, the algorithms
performed well in the classification of the RBANS score. The
decision trees performed the poorest, but as explained in the
Results section, they were still capable of drawing out key and
transparent information. Although an extensive comparison of
classification approaches was not the focus of this study, we
recognize that alternative variations of the algorithms used in
this study exist, for example, C4.5 and C5.0 for decision trees
as well as other learning algorithms such as neural networks
and boosting algorithms. These alternative approaches may

yield better results, and we intend to investigate these in the
future while ensuring that the interpretability of results remains
to be a key objective. In addition, the performance of the
classifiers could have been improved using a dimension
reduction technique such as PCA; however, this would have
impacted the interpretability of the classifier, as was the
objective of the study.

The main strength of this study is the utilization of data from
the TUDA study, a large and comprehensively characterized
cohort of community-dwelling older adults. Furthermore, a
subset of the TUDA study cohort was reexamined 5 to 7 years
later using standardized protocols at both time points. This
enabled changes in cognition to be tracked over time and the
rate of cognitive decline to be calculated compared with most
observational studies that measure cognition at one time point
only. The primary outcome of this study was based on the
RBANS test, a sensitive neuropsychiatric battery for global
cognitive assessment. As comprehensive data were available,
this permitted objective laboratory measures over subjective
measures of nutritional status to be included in the analytical
models, thus providing more robust data on predictors of
cognitive function.

Conclusions
In conclusion, the derived classification models were able to
identify a small number of key noninvasive predictors that are
able to predict cognitive dysfunction and the rate of change of
cognitive function with a high level of accuracy in the TUDA
study. The TUG score, the age at which the participant stopped
education, and whether or not the participant’s family reported
memory concerns emerged as key predictors that could
potentially be incorporated into a screening tool for cognitive
dysfunction for health care professionals to identify individuals
in need of further in-depth cognitive evaluation. Given the
burden on health care resources, this could result in
improvements in the efficiency of dementia screening and
present cost and time savings for the relevant health professions.
Furthermore, the results provide evidence to identify key targets
that could be included in public health strategies aimed at
prevention of dementia. Further investigation is necessary to
test the accuracy of the identified predictors in other large
cohorts and using other cognitive assessment tools. The TUDA
data enable extensive opportunities for future investigations of
the aging population.
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