Published on in Vol 8, No 7 (2020): July

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/15965, first published .
A Predictive Model Based on Machine Learning for the Early Detection of Late-Onset Neonatal Sepsis: Development and Observational Study

A Predictive Model Based on Machine Learning for the Early Detection of Late-Onset Neonatal Sepsis: Development and Observational Study

A Predictive Model Based on Machine Learning for the Early Detection of Late-Onset Neonatal Sepsis: Development and Observational Study

Journals

  1. Syed M, Syed S, Sexton K, Syeda H, Garza M, Zozus M, Syed F, Begum S, Syed A, Sanford J, Prior F. Application of Machine Learning in Intensive Care Unit (ICU) Settings Using MIMIC Dataset: Systematic Review. Informatics 2021;8(1):16 View
  2. Lino Ferreira da Silva Barros M, Oliveira Alves G, Morais Florêncio Souza L, da Silva Rocha E, Lorenzato de Oliveira J, Lynn T, Sampaio V, Endo P. Benchmarking Machine Learning Models to Assist in the Prognosis of Tuberculosis. Informatics 2021;8(2):27 View
  3. Rosnati M, Fortuin V, Olier I. MGP-AttTCN: An interpretable machine learning model for the prediction of sepsis. PLOS ONE 2021;16(5):e0251248 View
  4. Xiao T, Dong X, Lu Y, Zhou W. High-Resolution and Multidimensional Phenotypes Can Complement Genomics Data to Diagnose Diseases in the Neonatal Population. Phenomics 2023;3(2):204 View
  5. Sullivan B, Kausch S, Fairchild K. Artificial and human intelligence for early identification of neonatal sepsis. Pediatric Research 2023;93(2):350 View
  6. Sofouli G, Kanellopoulou A, Vervenioti A, Dimitriou G, Gkentzi D. Predictive Scores for Late-Onset Neonatal Sepsis as an Early Diagnostic and Antimicrobial Stewardship Tool: What Have We Done So Far?. Antibiotics 2022;11(7):928 View
  7. El-Rashidy N, Abuhmed T, Alarabi L, El-Bakry H, Abdelrazek S, Ali F, El-Sappagh S. Sepsis prediction in intensive care unit based on genetic feature optimization and stacked deep ensemble learning. Neural Computing and Applications 2022;34(5):3603 View
  8. Bachmann N, Tripathi S, Brunner M, Jodlbauer H. The Contribution of Data-Driven Technologies in Achieving the Sustainable Development Goals. Sustainability 2022;14(5):2497 View
  9. Celik I, Hanna M, Canpolat F, Mohan Pammi . Diagnosis of neonatal sepsis: the past, present and future. Pediatric Research 2022;91(2):337 View
  10. Kausch S, Brandberg J, Qiu J, Panda A, Binai A, Isler J, Sahni R, Vesoulis Z, Moorman J, Fairchild K, Lake D, Sullivan B. Cardiorespiratory signature of neonatal sepsis: development and validation of prediction models in 3 NICUs. Pediatric Research 2023;93(7):1913 View
  11. Strickler E, Thomas J, Thomas J, Benjamin B, Shamsuddin R. Exploring a global interpretation mechanism for deep learning networks when predicting sepsis. Scientific Reports 2023;13(1) View
  12. Beam K, Zupancic J. Machine learning: remember the fundamentals. Pediatric Research 2023;93(2):291 View
  13. Sullivan B, Fairchild K. Vital signs as physiomarkers of neonatal sepsis. Pediatric Research 2022;91(2):273 View
  14. Kaur K, Singh C, Kumar Y. Diagnosis and Detection of Congenital Diseases in New-Borns or Fetuses Using Artificial Intelligence Techniques: A Systematic Review. Archives of Computational Methods in Engineering 2023;30(5):3031 View
  15. Im J, Park S, Kim Y, Yoon S, Lee J. Predicting the need for intubation within 3 h in the neonatal intensive care unit using a multimodal deep neural network. Scientific Reports 2023;13(1) View
  16. Schögler A, Smets K. Neonatologie in tijden van big data, machine learning en artificiële intelligentie: potentiële toepassingen gebruikmakend van continu gemonitorde vitale parameters. Een systematische review.. Tijdschrift voor Geneeskunde 2023 View
  17. Iqbal F, Chandra P, Lewis L, Acharya D, Purkayastha J, Shenoy P, Kumar Patil A. Application of artificial intelligence to predict the sepsis in neonates admitted in neonatal intensive care unit. Journal of Neonatal Nursing 2024;30(2):141 View
  18. A. S, B. S. Analysis of machine learning and deep learning prediction models for sepsis and neonatal sepsis: A systematic review. ICT Express 2023;9(6):1215 View
  19. Meeus M, Beirnaert C, Mahieu L, Laukens K, Meysman P, Mulder A, Van Laere D. Clinical Decision Support for Improved Neonatal Care: The Development of a Machine Learning Model for the Prediction of Late-onset Sepsis and Necrotizing Enterocolitis. The Journal of Pediatrics 2024;266:113869 View
  20. Yoon S, Kim D, Park S, Han J, Lim J, Shin J, Eun H, Lee S, Park M. Prediction of Postnatal Growth Failure in Very Low Birth Weight Infants Using a Machine Learning Model. Diagnostics 2023;13(24):3627 View
  21. Liu J, Chen J, Dong Y, Lou Y, Tian Y, Sun H, Jin Y, Li J, Qiu Y. Clinical Timing-Sequence Warning Models for Serious Bacterial Infections in Adults Based on Machine Learning: Retrospective Study. Journal of Medical Internet Research 2023;25:e45515 View
  22. Park S, Moon J, Eun H, Hong J, Lee K. Artificial Intelligence-Based Diagnostic Support System for Patent Ductus Arteriosus in Premature Infants. Journal of Clinical Medicine 2024;13(7):2089 View
  23. Rahman J, Brankovic A, Tracy M, Khanna S. Exploring Computational Techniques in Preprocessing Neonatal Physiological Signals for Detecting Adverse Outcomes: Scoping Review. Interactive Journal of Medical Research 2024;13:e46946 View
  24. Sakore S, Devi S, Mahapure P, Kamble M, Jadhav P. Artificial Intelligence Applications in Neonatal Critical Care: A Scoping Review. Journal of Clinical Neonatology 2024;13(3):102 View
  25. Narasimha Rao K, Dadabada P, Jaipuria S. A systematic literature review of predictive analytics methods for early diagnosis of neonatal sepsis. Discover Public Health 2024;21(1) View
  26. Abd El-Aziz R, Rayan A. Early detection of sepsis using machine learning algorithms. Alexandria Engineering Journal 2025;111:47 View
  27. Stocker M, Fillistorf L, Carra G, Giannoni E. Early detection of neonatal sepsis and reduction of overall antibiotic exposure: Towards precision medicine. Archives de Pédiatrie 2024;31(8):480 View
  28. Husain A, Knake L, Sullivan B, Barry J, Beam K, Holmes E, Hooven T, McAdams R, Moreira A, Shalish W, Vesoulis Z. AI models in clinical neonatology: a review of modeling approaches and a consensus proposal for standardized reporting of model performance. Pediatric Research 2024 View
  29. Ezeobi Dennis P, Musiimenta A, William W, Kyoyagala S. “Evaluation of screening parameters and machine learning models for the prediction of neonatal sepsis: A systematic review.”. Intelligence-Based Medicine 2025;11:100195 View