Published on in Vol 8, No 7 (2020): July
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/15965, first published
.
Journals
- Syed M, Syed S, Sexton K, Syeda H, Garza M, Zozus M, Syed F, Begum S, Syed A, Sanford J, Prior F. Application of Machine Learning in Intensive Care Unit (ICU) Settings Using MIMIC Dataset: Systematic Review. Informatics 2021;8(1):16 View
- Lino Ferreira da Silva Barros M, Oliveira Alves G, Morais Florêncio Souza L, da Silva Rocha E, Lorenzato de Oliveira J, Lynn T, Sampaio V, Endo P. Benchmarking Machine Learning Models to Assist in the Prognosis of Tuberculosis. Informatics 2021;8(2):27 View
- Rosnati M, Fortuin V, Olier I. MGP-AttTCN: An interpretable machine learning model for the prediction of sepsis. PLOS ONE 2021;16(5):e0251248 View
- Xiao T, Dong X, Lu Y, Zhou W. High-Resolution and Multidimensional Phenotypes Can Complement Genomics Data to Diagnose Diseases in the Neonatal Population. Phenomics 2023;3(2):204 View
- Sullivan B, Kausch S, Fairchild K. Artificial and human intelligence for early identification of neonatal sepsis. Pediatric Research 2023;93(2):350 View
- Sofouli G, Kanellopoulou A, Vervenioti A, Dimitriou G, Gkentzi D. Predictive Scores for Late-Onset Neonatal Sepsis as an Early Diagnostic and Antimicrobial Stewardship Tool: What Have We Done So Far?. Antibiotics 2022;11(7):928 View
- El-Rashidy N, Abuhmed T, Alarabi L, El-Bakry H, Abdelrazek S, Ali F, El-Sappagh S. Sepsis prediction in intensive care unit based on genetic feature optimization and stacked deep ensemble learning. Neural Computing and Applications 2022;34(5):3603 View
- Bachmann N, Tripathi S, Brunner M, Jodlbauer H. The Contribution of Data-Driven Technologies in Achieving the Sustainable Development Goals. Sustainability 2022;14(5):2497 View
- Celik I, Hanna M, Canpolat F, Mohan Pammi . Diagnosis of neonatal sepsis: the past, present and future. Pediatric Research 2022;91(2):337 View
- Kausch S, Brandberg J, Qiu J, Panda A, Binai A, Isler J, Sahni R, Vesoulis Z, Moorman J, Fairchild K, Lake D, Sullivan B. Cardiorespiratory signature of neonatal sepsis: development and validation of prediction models in 3 NICUs. Pediatric Research 2023;93(7):1913 View
- Strickler E, Thomas J, Thomas J, Benjamin B, Shamsuddin R. Exploring a global interpretation mechanism for deep learning networks when predicting sepsis. Scientific Reports 2023;13(1) View
- Beam K, Zupancic J. Machine learning: remember the fundamentals. Pediatric Research 2023;93(2):291 View
- Sullivan B, Fairchild K. Vital signs as physiomarkers of neonatal sepsis. Pediatric Research 2022;91(2):273 View
- Kaur K, Singh C, Kumar Y. Diagnosis and Detection of Congenital Diseases in New-Borns or Fetuses Using Artificial Intelligence Techniques: A Systematic Review. Archives of Computational Methods in Engineering 2023;30(5):3031 View
- Im J, Park S, Kim Y, Yoon S, Lee J. Predicting the need for intubation within 3 h in the neonatal intensive care unit using a multimodal deep neural network. Scientific Reports 2023;13(1) View
- Schögler A, Smets K. Neonatologie in tijden van big data, machine learning en artificiële intelligentie: potentiële toepassingen gebruikmakend van continu gemonitorde vitale parameters. Een systematische review.. Tijdschrift voor Geneeskunde 2023 View
- Iqbal F, Chandra P, Lewis L, Acharya D, Purkayastha J, Shenoy P, Kumar Patil A. Application of artificial intelligence to predict the sepsis in neonates admitted in neonatal intensive care unit. Journal of Neonatal Nursing 2024;30(2):141 View
- A. S, B. S. Analysis of machine learning and deep learning prediction models for sepsis and neonatal sepsis: A systematic review. ICT Express 2023;9(6):1215 View
- Meeus M, Beirnaert C, Mahieu L, Laukens K, Meysman P, Mulder A, Van Laere D. Clinical Decision Support for Improved Neonatal Care: The Development of a Machine Learning Model for the Prediction of Late-onset Sepsis and Necrotizing Enterocolitis. The Journal of Pediatrics 2024;266:113869 View
- Yoon S, Kim D, Park S, Han J, Lim J, Shin J, Eun H, Lee S, Park M. Prediction of Postnatal Growth Failure in Very Low Birth Weight Infants Using a Machine Learning Model. Diagnostics 2023;13(24):3627 View
- Liu J, Chen J, Dong Y, Lou Y, Tian Y, Sun H, Jin Y, Li J, Qiu Y. Clinical Timing-Sequence Warning Models for Serious Bacterial Infections in Adults Based on Machine Learning: Retrospective Study. Journal of Medical Internet Research 2023;25:e45515 View
- Park S, Moon J, Eun H, Hong J, Lee K. Artificial Intelligence-Based Diagnostic Support System for Patent Ductus Arteriosus in Premature Infants. Journal of Clinical Medicine 2024;13(7):2089 View
- Rahman J, Brankovic A, Tracy M, Khanna S. Exploring Computational Techniques in Preprocessing Neonatal Physiological Signals for Detecting Adverse Outcomes: Scoping Review. Interactive Journal of Medical Research 2024;13:e46946 View
- Sakore S, Devi S, Mahapure P, Kamble M, Jadhav P. Artificial Intelligence Applications in Neonatal Critical Care: A Scoping Review. Journal of Clinical Neonatology 2024;13(3):102 View
- Narasimha Rao K, Dadabada P, Jaipuria S. A systematic literature review of predictive analytics methods for early diagnosis of neonatal sepsis. Discover Public Health 2024;21(1) View
- Abd El-Aziz R, Rayan A. Early detection of sepsis using machine learning algorithms. Alexandria Engineering Journal 2025;111:47 View
- Stocker M, Fillistorf L, Carra G, Giannoni E. Early detection of neonatal sepsis and reduction of overall antibiotic exposure: Towards precision medicine. Archives de Pédiatrie 2024 View