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Abstract

Background: Neonatal sepsis is associated with most cases of mortalities and morbidities in the neonatal intensive care unit
(NICU). Many studies have developed prediction models for the early diagnosis of bloodstream infections in newborns, but there
are limitations to data collection and management because these models are based on high-resolution waveform data.

Objective: The aim of this study was to examine the feasibility of a prediction model by using noninvasive vital sign data and
machine learning technology.

Methods: We used electronic medical record data in intensive care units published in the Medical Information Mart for Intensive
Care III clinical database. The late-onset neonatal sepsis (LONS) prediction algorithm using our proposed forward feature selection
technique was based on NICU inpatient data and was designed to detect clinical sepsis 48 hours before occurrence. The performance
of this prediction model was evaluated using various feature selection algorithms and machine learning models.

Results: The performance of the LONS prediction model was found to be comparable to that of the prediction models that use
invasive data such as high-resolution vital sign data, blood gas estimations, blood cell counts, and pH levels. The area under the
receiver operating characteristic curve of the 48-hour prediction model was 0.861 and that of the onset detection model was 0.868.
The main features that could be vital candidate markers for clinical neonatal sepsis were blood pressure, oxygen saturation, and
body temperature. Feature generation using kurtosis and skewness of the features showed the highest performance.

Conclusions: The findings of our study confirmed that the LONS prediction model based on machine learning can be developed
using vital sign data that are regularly measured in clinical settings. Future studies should conduct external validation by using
different types of data sets and actual clinical verification of the developed model.

(JMIR Med Inform 2020;8(7):e15965) doi: 10.2196/15965
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Introduction

With the developments in the care system of neonate intensive
care units (NICUs), the survival rates of very low birth weight
infants have greatly increased. However, neonatal sepsis is still
associated with most morbidities and mortalities in the NICUs,
and 20% of the deaths in infants weighing <1500 g has been
reported to be caused by sepsis. Moreover, infants with sepsis
are about three times more likely to die compared to those
without sepsis [1]. Neonatal sepsis is categorized into early-onset
neonatal sepsis occurring within 72 hours of birth and late-onset
neonatal sepsis (LONS) occurring between 72 hours and 120
days after birth [1,2]. Early-onset neonatal sepsis is caused by
an in utero infection or by vertical bacterial transmission from
the mother during vaginal delivery, while LONS is caused not
only by vertical bacterial transmission but also by horizontal
bacterial transmission from health care providers and the
environment.

Sepsis due to group B Streptococcus, which is the most common
cause of early-onset neonatal sepsis, can be reduced by 80%
before delivery, and intrapartum antibiotic prophylaxis is given
when necessary. However, in the case of LONS, unlike
early-onset neonatal sepsis, there is no specific antibiotic
prophylaxis and there is no robust algorithm that can contribute
to its early detection in nonsymptomatic newborns [3,4]. A
blood culture test is required for the confirmatory diagnosis of
LONS, but it takes an average of 2-3 days to obtain blood culture
results. Generally, empirical antibiotic treatments are prescribed
to reduce the risk of treatment delay. Even if a negative finding
is reported for blood culture, antibiotic therapy is prolonged
when the clinical symptoms of LONS are manifested because
of the possibility of false-negative blood culture results [5,6].
This treatment process results in bacterial resistance, adverse
effects due to prolonged antibiotic therapy, and increased
medical costs.

Since several studies have analyzed medical imaging data such
as computed tomography and magnetic resonance imaging scans
and radiographs by using deep learning and machine learning,
recent studies have developed prediction models for the early
diagnosis of bloodstream infections and symptomatic systemic
inflammatory response syndrome in newborns [7-9].

Griffin et al [10,11] presented a method for identifying the early
stage of sepsis by checking the abnormal phase of heart rate
characteristics. Stanculescu et al [12] applied the autoregressive
hidden Markov model to physiological events such as
desaturation and bradycardia in infants and predicted the
occurrence of an infection by using the onset prediction model.
In addition, a model was presented to make predictions by
generating a machine learning model based on vital signs or
laboratory features recorded in the electronic medical record
(EMR) of an infant [13,14]. However, heart rate characteristics
can be affected by respiratory deterioration and surgical
procedures in addition to sepsis [15] and heart rate
characteristics cannot be obtained in patient monitors without
an heart rate characteristic index function. The existing
prediction models also involved high computational cost,
high-resolution data, or laboratory parameters such as complete

blood cell count, immature neutrophil to total neutrophil ratio,
and polymorphonuclear leukocyte counts.

Studies on machine learning prediction models using EMR data
have inherent problems such as high dimensionality and sparsity,
data bias, and few abnormal events [16-18]. Previous studies
have tried to resolve the abovementioned problems by using
several techniques such as oversampling, undersampling, data
handling, and feature selection [19-22]. However, the
performance of the model that learned processed data by using
data augmentation has not significantly improved compared to
that of the previous prediction models, and the EMR-based
prediction model is still being challenged [17,20,21]. Therefore,
by using data from the Medical Information Mart for Intensive
Care III (MIMIC-III) database [23], we aimed to apply the
feature selection algorithm to develop a machine learning model
that reliably predicts LONS by using low sparsity and few
scenarios and to examine the feasibility of the developed
prediction model by using noninvasive vital sign data and
machine learning technology. In addition, we sought to identify
clinically significant vital signs and their corresponding feature
analysis methods in LONS.

Methods

Data Source and Target Population
In this study, the MIMIC-III database [23], which consisted of
Beth Israel Deaconess Medical Center’s public data on
admission in the intensive care unit, was used as the data source.
The use of data from the MIMIC-III database for research was
approved by the Institutional Review Boards of Beth Israel
Deaconess Medical Center and Massachusetts Institute of
Technology. NICU inpatients in the 2001-2008 MIMIC-III
database were selected as the total population, and their data
were extracted. The patients were assigned to sepsis and control
groups. The sepsis group consisted of patients with diagnostic
codes of septicemia, infections specific to the perinatal period,
sepsis, septic shock, systemic inflammatory response syndrome,
etc, based on the discharge report. The diagnostic record of the
MIMIC-III database utilized the International Classification of
Diseases, Ninth Revision, Clinical Modification codes 038
(septicemia), 771 (infants specific to the perinatal period), 995.9
(systemic inflammatory response syndrome), or 785.52 (septic
shock), including the abovementioned diagnosis.

Identification of the Sepsis Diagnosis Events
Since the diagnosis table of the MIMIC-III database does not
contain information on the timing of diagnosis, this information
had to be extracted indirectly from the laboratory test order and
intervention information to deduce the timing of diagnosis.
Generally, positive blood culture results, clinical deterioration,
and high C-reactive protein levels are considered as risk factors,
and antibiotic treatment is given by aggregating the information
on risk factors [3,4,6]. However, in preterm infants, it is difficult
to distinguish the normal conditions of the neonatal period from
the clinical signs of sepsis, and since the C-reactive protein
value could not be obtained from the MIMIC-III database, the
timing of sepsis diagnosis was extracted based on the time of
blood culture testing and antibiotic prescription. Generally, a
positive blood culture result is selected as the gold standard
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based on the criteria used to confirm sepsis. However, since the
amount of blood samples that can be collected from preterm or
very low birth weight infants is very limited, the number of
blood cultures was also small. Moreover, false-negative results
may occur because of the low sensitivity of the blood culture,
prior use of broad-spectrum antibiotics, and incubation time of
the neonatal blood culture [24,25]. Therefore, the timing of
sepsis diagnosis was extracted based on the time of the
administration of the order of broad-spectrum antibiotics, time
of antibiotic administration through intravenous routes, and the
time of blood culture order. In the MIMIC-III database, the date
on which the item of SPEC_TYPE_DESC in the
MICROBIOLOGY EVENTS table was marked as BLOOD
CULTURE was assigned as the date of blood culture and the
date on which the DRUG was broad-spectrum antibiotics and
the ROUTE was filled as IV was used as the antibiotic date in
the PRESCRIPTION table.

Feature Processing and Imputation
In the machine learning model, the following features were
selected: heart rate, systolic blood pressure, diastolic blood
pressure, mean blood pressure, oxygen saturation, respiratory
rate, and body temperature. In the MIMIC-III database, the vital
sign and laboratory data that can be used as the candidate
features of the predictive models were heart rate, systolic blood
pressure, diastolic blood pressure, mean blood pressure,
respiratory rate, body temperature, oxygen saturation, Glasgow
Coma Scale score, white blood cell count, red blood cell count,
platelet count, bilirubin level, albumin level, pH, potassium
level, sodium level, creatinine level, blood urea nitrogen, glucose
level, partial pressure of carbon dioxide, fraction of inspired
oxygen, serum bicarbonate levels, hematocrit, tidal volume,
mean airway pressure, peak airway pressure, plateau airway
pressure, and Apgar score. Among them, the primary vital signs
(body temperature, heart rate, respiratory rate, and blood
pressure) and oxygen saturation levels were recorded
periodically, whereas the utilization of the other measured values
were limited because they were not recorded periodically or
they were recorded only for specific patients. Therefore, body
temperature, heart rate, respiratory rate, blood pressure, and
oxygen saturation that can be commonly applied in predictive
models were selected as the features. Moreover, these vital signs

are usually accessible from the bedside, do not involve
laboratory tests, and can be applied in most hospitals. However,
although the current value of the vital signs can be intuitively
used as input data, irregular observation cycles of the patient
can increase its complexity. Hence, in this study, we tried to
increase the accuracy of the actual physiological deterioration
of the patient by additionally calculating the statistical and
current values of the vital signs and comparing and evaluating
the performance of the significant statistical values and
observation period for each vital sign. The statistical values,
vital signs, and processed observation window size used for the
generation are shown in Table 1. In this study, we used statistical
values, which are used by many EMR-based prediction models
and time series analysis. However, Fourier transform analysis,
wavelet transform, and spectrum analysis, which are mainly
applied in time series, were excluded from this study because
they require high-frequency and relatively periodic data to
produce significant results.

For the normal distribution for goodness of fit test, the
Shapiro-Wilk test was used for <5000 samples and the
Kolmogorov-Smirnov test was used for ≥5000 samples. These
normality tests were used when selecting the suitable statistical
method depending on the family of distributions. For the
correlation, Pearson’s correlation was used for normally
distributed continuous variables; otherwise, Spearman’s
correlation was used. Entropy was calculated by estimating the
probability density function of the variable with Gaussian kernel
density evaluation if a normal distribution was not satisfied.
Statistical significance was set to .05. The data quality was
assessed by missing value filter and three-sigma rule, and the
last observation carried forward method was applied for vital
signs assessed as not meeting data quality. The last observation
carried forward method is similar to the use of vital signs for
diagnosis in general clinical practice and has been mainly used
as the imputation method of missing values in clinical prediction
models. When there was no measured value, the missing value
in the data applied zero imputation to show that it was never
measured in the prediction model. Zero imputation was
conducted if the calculation could not be performed for reasons
such as divided by zero after applying the statistical feature
processing.

Table 1. Experimental settings of the vital signs, statistical methods, and processed window time. h: hours.

Experimental optionsCategory

Heart rate, respiratory rate, oxygen saturation, systolic blood pressure, mean blood pressure, diastolic
blood pressure, body temperature

Value of vital signs

Mean, median, minimum, maximum, standard deviation, skewness, kurtosis, slope, entropy, delta,
absolute delta, correlation coefficient, cross-correlation

Statistical method of feature processing

3 h, 6 h, 12 h, 24 hProcessed observation window size

Feature Selection Algorithms
To increase the model’s performance and to exclude statistical
feature values with low feature importance, a method that has
been used and verified mainly in the existing machine learning

was used. The feature selection method and algorithm were
selected because of the large sparsity of data used in this study
and because the coefficient was not larger than that of the typical
data (Table 1). In addition, the feature selection algorithm
presented in this study was applied (Figure 1).

JMIR Med Inform 2020 | vol. 8 | iss. 7 | e15965 | p. 3http://medinform.jmir.org/2020/7/e15965/
(page number not for citation purposes)

Song et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Proposed feature selection algorithm.

In this study, M is the prediction model, x is the feature derived
from each vital sign, and F is the performance of the model and
the sum of the receiver operating characteristic (ROC) and
average precision. In the case of the data in this study, it was
difficult to measure the performance of the minor class when
the incidence ratio was too low. Therefore, the classification
performance of the major and minor classes for the model
selection was evaluated at the same time as the sum of the
average precision and area under the ROC (AUROC) curve.

When the features were derived from the vital signs, it was
limited to the use of only data obtained from the past observation
based on the prediction time to prevent any lookahead due to
future observations. In addition, to measure the performance of
the proposed feature selection algorithm, we compared the
methods usually used from each approach of the feature
selection techniques. In the filter approach, chi-squared and
mutual information gain were selected. In the embedded
approach, lasso linear model L1–based feature selection, extra
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tree, random forest, and gradient boosting tree–based feature
selection were selected. The other principal component analyses
were excluded. Principal component analysis is mainly used in
a high dimensional space; thus, an additional analysis of the
generated features is needed. This means that the direct
interpretation power is relatively low in terms of the correlation
between the predicted results and the feature importance. In
addition, principal component analysis has several disadvantages
such as the feature transformation is possible only when all the
existing features are contained and high computational cost.
Thus, principal component analysis was excluded owing to the
above problems. To minimize the differences between the
models’ coincidence and temporal characteristics, the
observation window and feature processing time stamps were
used equally and the model was built without data sampling.

Machine Learning Algorithms
For the classification algorithm of LONS prediction, logistic
regression, Gaussian Naïve Bayes, decision tree, gradient
boosting, adaptive boosting, bagging classifier, random forest,
and multilayer perceptron were selected and assessed. These
machine learning classifiers were mainly used in supervised
learning methods such as linear model, naive Bayes, decision
tree, ensemble method, and neural network model. In the case
of the deep learning model, the performance variation was large
depending on the number of layers and the change in the
learning rate, and the amount of data was not enough to train
the deep learning model. Thus, the deep learning models were
excluded. To evaluate the performance between the feature
selection model and the proposed algorithm, 10% of the target
population was used as the feature selection data set, 80% as
the train set, and 10% as the test set to perform a stratified
10-fold cross-validation. Then, 100 turns of bootstrapping were
applied to obtain the confidence interval for the 95% section of
the performance indicator. The model performance indicator
enabled a detailed evaluation of the imbalanced data
performance by using indicators such as accuracy, AUROC
curve, area under the precision-recall curve (APRC), positive
predictive value, negative predictive value, and the harmonic
mean of precision and recall (F1 score).

Data Sampling Algorithm
If the data sampling algorithm is applied to model learning after
labeling of the data set, a normal model learning is barely
attainable because of the imbalanced and overwhelming data.

In this study, undersampling algorithms, oversampling
algorithms, and a combination of both oversampling and
undersampling algorithms, which are data sampling algorithms,
were applied to the training set, and the extent to which the
model performance for EMR data set was affected was checked
using a test set that was not sampled. The oversampling
algorithms used were the synthetic minority oversampling
technique (SMOTE) [26], adaptive synthetic sampling method
[27], and RandomOverSampler. The undersampling algorithms
used were NearMiss [28], RandomUnderSampler,
All-K-Nearest-Neighbors [29], and InstanceHardnessThreshold
[30]. As for the combination of oversampling and undersampling
algorithms, SMOTE + Wilson’s Edited Nearest Neighbor
(SMOTEENN) rule [31] and SMOTE + Tomek links [32] were
applied.

Evaluation of the Algorithm
The methods presented in Figure 2 were introduced for the
evaluation of the feature selection algorithms and prediction
model. To prevent leaking of the test set, the MIMIC-III data
were divided by organizing the feature selection evaluation data
set at 20% and the prediction model evaluation data set at 80%
by using a stratified shuffle. To avoid the overestimation in the
test set due to the optimized estimator of 10-fold
cross-validation, the performance of the prediction models was
measured by initializing the hyperparameters at each fold. For
the feature selection algorithm, performance was classified
based on the Gaussian Naïve Bayesian Classifier as shown in
the study by Phyu and Oo [33]. Given that the classifier’s
evaluation algorithm is straightforward and that the ensemble
classifier such as the gradient-boosted machine can have
interactions, nonlinear relationships, and automatically feature
selection between features and because there is ambiguity in
the statistical properties, the classifier was not selected as the
base model [34]. In addition, the mean, minimum, maximum,
standard deviation, and median of each vital sign were
designated as the baseline features and compared with models
that did not perform a feature selection. The existing research
model was compared to the model development algorithm
presented in this study by presenting both the performance of
the presented model and the performance that would have
resulted if conducted using the MIMIC-III data. We used
Statsmodels and NumPy libraries to analyze the statistical
properties. The metric module, a Python module from
scikit-learn library, was used to evaluate the classifiers.
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Figure 2. Diagram of the evaluation process for models and algorithms. MIMIC-III: Medical Information Mart for Intensive Care; NICU: neonatal
intensive care unit.

Results

Characteristics of the Study Population
Table 2 shows the population characteristics of the infants in
this study. Of the 7870 infants in the MIMIC-III database, 21
infants were assigned to the clinical LONS group and 2798
infants met the inclusion criteria for the control group.
Gestational age, birth weight, and length of stay were
significantly different between the clinical LONS and control
groups. The median (IQR) gestational age and birth weight in

the clinical LONS group were 30 (27.0-34.5) weeks and 0.80
(0.71-1.07) kg, respectively, which were slightly lower than
those of the control group whose median (IQR) gestational age
and birth weight were 34 (33.5-34.5) weeks and 2.02 (1.58-2.53)
kg, respectively. The clinical LONS group showed a
significantly longer intensive care unit stay than the control
group (87.9 days and 13.3 days, respectively). The male sex
rate (%) showed that the male infants in both the clinical LONS
and proven sepsis groups had a high risk for infection (61.9%
and 51.5%, respectively).
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Table 2. Characteristics of the target population (N=7870).

NICU control group,
n=2798

Proven sepsis group,
n=715

Clinical LONSb group,
n=21

NICUa, n=96Demographic characteristics

34 (33.5-34.5)30 (26.6-34.5)30 (27.0-34.5)34.5 (33.5-35.5)Gestational age (week), median
(25th-75th percentile)

2.02 (1.58-2.53)0.98 (0.72-1.28)0.80 (0.71-1.07)2.56 (0.36-3.27)Birth weight (kg), median (25th-
75th percentile)

13.3 (7.1-28.5)71.2 (42.2-107.2)87.9 (61.9-110.9)0.9 (0.1-10.0)Length of stay (day), median (25th-
75th percentile)

14 (0.5)1 (5.0)3 (3.1)64 (0.8)Mortality in the hospital, n (%)

Gender, n (%)

1508 (53.9)368 (51.5)13 (61.9)54 (56.3)Male, 4243 (53.9)

1290 (46.1)347 (48.5)8 (38.1)42 (43.7)Female, 3627 (46.1)

Race, n (%)

1747 (62.4)463 (64.8)13 (61.9)56 (58.3)White, 4764 (60.5)

301 (10.8)77 (10.8)3 (14.3)14 (14.6)African American, 865 (11.0)

161 (5.8)36 (5.0)0 (0.0)2 (2.1)Asian, 715 (9.1)

136 (4.9)29 (4.1)1 (4.8)3 (3.1)Hispanic, 369 (4.7)

453 (16.2)110 (15.4)4 (19.0)21 (21.9)Other, 1157 (14.7)

Hospital admission type, n (%)c

2787 (96.4)713 (99.7)21 (100.0)95 (99.0)Newborn, 7859 (99.9)

87 (3.0)9 (1.3)7 (33.3)22 (22.9)Emergency, 220 (2.8)

16 (0.6)1 (0.1)0 (0.0)0 (0.0)Urgent, 23 (0.3)

2 (0.1)0 (0.0)0 (0.0)0 (0.0)Elective, 4 (0.1)

aNICU: neonatal intensive care unit.
bLONS: late-onset neonatal sepsis.
callowed to duplicated admission types.

Performance of the Feature Selection Algorithm
The performances of the proposed feature selection algorithm
and the existing feature selection algorithm were compared after
100 turns of bootstrapping; the measured performance by the
algorithm is shown in Table 3. Given that the AUROC and
accuracy rate are likely to be overestimated in the imbalanced
data such as this study’s data, performance was evaluated based
on the APRC and F1 measure, which can evaluate the
classification performance for major and minor classes. If the
window size is 6 hours, the accuracy of the chi-squared feature
selection was the highest at 0.60. The extra tree–based feature
selection showed a higher performance with AUROC of 0.79,
APRC of 0.23, and F1 score of 0.21. When the goal window
size was set at 12 hours, the chi-squared (accuracy 0.68, positive
predictive value 0.18), extra tree (APRC 0.24), and the proposed
algorithm (AUROC 0.79, F1 score 0.25, and weighted-F1 0.65)
showed a higher performance than the baseline. However, the
feature selection of the manual information gain and lasso L1
penalty classification was still lower than the performance of
the baseline model. In a 24-hour window, the proposed
algorithm displayed an overall high performance with AUROC
of 0.81 (0.81-0.82), APRC of 0.24 (0.23-0.25), and F1 score of
0.33 (0.32-0.34). When the compatibility interval was evaluated,

a uniform performance was displayed despite the variations
caused by the sample. Overall, as the duration of the observation
window increased, the model receiving the features consisting
of statistical values as input had improved performance
compared to the baseline feature model. The lasso L1 penalty
classification model, which is a univariate method, shows the
highest indicator with an accuracy of 0.90. However, an
AUROC of 0.69 and F1 score of 0.05 indicate that a feature
that can barely distinguish normal from suspected infection
conditions was selected. The wrapper method feature selection,
which was expected to show a high performance, showed a
lower performance than the baseline feature model when the
observation window was 6 hours. When the observation time
was increased to 12 or 24 hours, the extra tree feature selection
showed a high performance. However, as the confidence interval
appears wider, the robustness based on the sample population
changes is lower than those of the other feature selection
algorithms. In particular, the feature selection of the feature
importance in the random forest and gradient boosting classifier
showed an AUROC of 0.56-0.62 and 0.69-0.75, respectively,
at 12 hours, and with the 24-hour window, it showed a wide
range of confidence intervals at 0.72-0.79 and 0.75-0.81,
respectively.
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Table 3. Comparison results for various feature selection algorithmsa.

NPVh, odds ra-
tio (95% CI)

PPVg, odds ra-
tio (95% CI)

Weighted-F1f,
odds ratio (95%
CI)

F1e, odds ratio
(95% CI)

APRCd, odds
ratio (95% CI)

AUROCc, odds
ratio (95% CI)

Accuracyb, odds
ratio (95% CI)

Window size and
algorithm

24 hours

0.95 (0.95-0.96)0.28 (0.27-0.29)0.80 (0.79-0.81)0.39 (0.38-0.40)0.31(0.31-0.32)0.81 (0.80-0.81)0.76 (0.75-0.78)Proposed

0.92 (0.92-0.93)0.30 (0.29-0.31)0.83 (0.82-0.85)0.34 (0.34-0.35)0.28 (0.27-0.29)0.77 (0.76-0.77)0.83 (0.81-0.84)CSi

0.99 (0.98-0.99)0.11 (0.11-0.12)0.08 (0.06-0.11)0.20 (0.20-0.21)0.12 (0.12-0.13)0.53 (0.51-0.54)0.15 (0.13-0.17)MIGj

0.93 (0.93-0.94)0.13 (0.12-0.13)0.26 (0.21-0.30)0.22 (0.21-0.22)0.12 (0.12-0.13)0.54 (0.52-0.55)0.27 (0.23-0.31)LL1k

0.97 (0.96-0.97)0.24 (0.23-0.26)0.68 (0.64-0.73)0.36 (0.35-0.37)0.31 (0.29-0.32)0.79 (0.77-0.81)0.64 (0.60-0.68)ETl

0.98 (0.98-0.98)0.15 (0.14-0.16)0.30 (0.25-0.36)0.25 (0.24-0.26)0.20 (0.18-0.23)0.65 (0.61-0.68)0.31 (0.27-0.36)RFm

0.97 (0.97-0.98)0.19 (0.18-0.21)0.51 (0.45-0.57)0.30 (0.29-0.32)0.25 (0.23-0.27)0.72 (0.70-0.75)0.49 (0.44-0.54)GBn

0.96 (0.96-0.97)0.19 (0.18-0.19)0.62 (0.59-0.65)0.30 (0.29-0.31)0.27 (0.26-0.28)0.77 (0.77-0.77)0.56 (0.53-0.58)Baseline

12 hours

0.95 (0.95-0.95)0.21 (0.20-0.22)0.70 (0.67-0.73)0.31 (0.30-0.32)0.25 (0.24-0.25)0.75 (0.75-0.76)0.65 (0.62-0.68)Proposed

0.93 (0.92-0.93)0.23 (0.22-0.23)0.79 (0.78-0.81)0.30 (0.29-0.30)0.22 (0.22-0.23)0.72 (0.71-0.72)0.77 (0.75-0.78)CS

0.98 (0.97-0.98)0.11 (0.11-0.11)0.13 (0.10-0.16)0.21 (0.20-0.21)0.15 (0.14-0.16)0.58 (0.56-0.60)0.17 (0.15-0.19)MIG

1.00 (1.00-1.00)0.11 (0.11-0.11)0.02 (0.02-0.02)0.20 (0.19-0.20)0.11 (0.11-0.11)0.50 (0.50-0.50)0.11 (0.11-0.11)LL1

0.97 (0.97-0.98)0.17 (0.16-0.19)0.53 (0.49-0.57)0.29 (0.27-0.30)0.29 (0.28-0.30)0.78 (0.77-0.80)0.48 (0.44-0.51)ET

0.99 (0.99-0.99)0.13 (0.12-0.14)0.22 (0.17-0.27)0.23 (0.22-0.24)0.18 (0.16-0.19)0.61 (0.58-0.64)0.25 (0.21-0.29)RF

0.97 (0.97-0.98)0.16 (0.15-0.17)0.45 (0.40-0.50)0.27 (0.25-0.27)0.24 (0.23-0.26)0.74 (0.72-0.76)0.41 (0.37-0.45)GB

0.95 (0.95-0.95)0.20 (0.19-0.21)0.67 (0.63-0.71)0.30 (0.30-0.31)0.23 (0.23-0.24)0.73 (0.73-0.74)0.62 (0.59-0.66)Baseline

6 hours

0.96 (0.95-0.96)0.15 (0.14-0.16)0.49 (0.45-0.52)0.25 (0.24-0.25)0.20 (0.20-0.21)0.70 (0.70-0.71)0.44 (0.40-0.47)Proposed

0.93 (0.93-0.94)0.16 (0.16-0.17)0.60 (0.56-0.65)0.25 (0.24-0.26)0.18 (0.17-0.19)0.67 (0.65-0.68)0.56 (0.52-0.61)CS

0.99 (0.98-1.00)0.11 (0.11-0.11)0.03 (0.02-0.03)0.19 (0.19-0.20)0.11 (0.11-0.11)0.50 (0.50-0.50)0.11 (0.11-0.11)MIG

1.00 (1.00-1.00)0.11 (0.11-0.11)0.02 (0.02-0.02)0.19 (0.19-0.20)0.11 (0.11-0.11)0.50 (0.50-0.50)0.11 (0.11-0.11)LL1

0.97 (0.96-0.97)0.17 (0.16-0.18)0.49 (0.43-0.54)0.28 (0.26-0.29)0.23 (0.22-0.24)0.71 (0.69-0.74)0.46 (0.41-0.50)ET

0.97 (0.96-0.98)0.28 (0.22-0.34)0.22 (0.21-0.23)0.17 (0.15-0.18)0.17 (0.15-0.18)0.61 (0.59-0.64)0.30 (0.25-0.34)RF

0.96 (0.95-0.97)0.15 (0.14-0.16)0.38 (0.32-0.44)0.25 (0.24-0.26)0.19 (0.18-0.21)0.66 (0.63-0.69)0.37 (0.32-0.42)GB

0.95 (0.95-0.95)0.18 (0.18-0.19)0.65 (0.61-0.69)0.29 (0.21-0.22)0.21 (0.21-0.22)0.72 (0.71-0.72)0.60 (0.56-0.63)Baseline

aThe highest score in each column is shown in italics.
bAccuracy: (true positive + true negative) / (positive + negative).
cAUROC: area under the receiver operating characteristic.
dAPRC: area under the precision recall curve.
eF1: harmonic mean of precision and recall.
fWeighted-F1: macro F1 measurement.
gPPV: positive predictive value.
hNPV: negative predictive value.
iCS: chi-square test.
jMIG: mutual information gain.
kLL1: lasso L1 penalty classification.
lET: extra tree.
mRF: random forest.
nGB: gradient boosting.

JMIR Med Inform 2020 | vol. 8 | iss. 7 | e15965 | p. 8http://medinform.jmir.org/2020/7/e15965/
(page number not for citation purposes)

Song et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Performance of Data Sampling
Data sampling was measured by fixing the observation time to
24 hours, applying sampling only on training data using the
Gaussian Naïve Bayesian classifier and performing stratified
10-fold cross validation. The results of the accuracy analysis
showed that the adaptive synthetic sampling method,
All-K-Nearest-Neighbors, InstanceHardnessThreshold, and
SMOTEENN performed better than the average value of 0.7,
which exceeds the 0.579 of the original data. AUROC and
APRC showed that all sampling methods, except SMOTEENN,
showed a lower or similar performance to the original ones. In
the F1 score, SMOTEENN and instance hardness threshold had
a higher performance than the original ones.

Characteristics of the Selected Features
The features obtained from the proposed feature selection
method are shown in Table 4. Clinicians might be provided
with clinical information on selected features through plots in
the form of Table 5 and Multimedia Appendix 1. Table 5
represents the feature importance of the onset after 24 hours
calculated by the prediction model learned based on the values
of the selected features. Multimedia Appendix 1 provides
information on how the prediction model made decisions. Three
features were selected among the features mainly selected for
each vital sign, and the difference of the latent feature selected
based on the window size was confirmed. For the 24-hour

window size, the delta between the current and previous
measurements was the main variable for all the vital signs. Of
these, the kurtosis of the respiratory rate, kurtosis of the body
temperature, standard oxygen saturation, and the delta of blood
pressures were extracted similarly to the significant feature of
the septic shock prediction model [35] for adult patients in the
MIMIC-III database, as presented by Carrara et al. As the
window size decreased, the data characteristics of the features
shifted in importance to mean, entropy, and entropy of delta.
This is probably because, in newborns with suspected infection,
the frequency of the records increased within the same period
such that it affected the entropy increase and was selected as
the main variable. When the P value of the feature was analyzed
using multivariate logistic regression and by focusing on the
infection and noninfection points of the statistically significant
variables, the oxygen saturation showed desaturation symptoms
and wide oxygen saturation changes at the infection point. For
the heart rate, tachycardia symptoms were observed at the point
of infection. For the body temperature, a delta kurtosis showed
a lower expected infection point. Unstable temperature,
bradycardia, tachycardia, and hypotension, which are the clinical
signs of LONS, were measured [25]. The statistical variable
was found to have a lower or similar performance compared to
the baseline model for the 12-hour window size. This shows
that at least 12 hours of accumulated vital signs must be
statistically analyzed so that they can be used as significant
physiomarkers.
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Table 4. Selected features from the proposed feature selection algorithm.

Statistical method of feature processingVital signs and prediction window size

Heart rate

Mean, median absolute delta, minimum absolute delta24 hours

Mean, minimum absolute delta, median absolute delta12 hours

Mean, entropy delta, entropy6 hours

Respiratory rate

Mean, median absolute delta, kurtosis absolute delta24 hours

Mean, entropy delta, minimum absolute delta12 hours

Mean, entropy absolute delta, entropy delta6 hours

Oxygen saturation

Mean, standard deviation delta, maximum absolute delta24 hours

Mean, maximum absolute delta, standard deviation delta12 hours

Mean, entropy delta, entropy absolute delta6 hours

Diastolic blood pressure

Mean, maximum absolute delta, maximum delta24 hours

Mean, kurtosis delta, kurtosis absolute delta12 hours

Mean, entropy delta, entropy absolute delta6 hours

Mean blood pressure

Mean, maximum absolute delta, maximum delta24 hours

Mean, maximum absolute delta, kurtosis delta12 hours

Mean, entropy delta, entropy absolute delta6 hours

Systolic blood pressure

Mean, maximum absolute delta, maximum delta24 hours

Mean, kurtosis delta, kurtosis absolute delta12 hours

Mean, entropy absolute delta, entropy delta6 hours

Body temperature

Mean, kurtosis delta, mean absolute delta24 hours

Mean, entropy delta, entropy absolute delta12 hours

Mean, entropy delta, entropy absolute delta6 hours
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Table 5. An example of the prediction feature importance obtained from the prediction model based on the feature selection algorithm.

Feature importance valuesStatistical method of feature processingVital signs

0.282MeanBody temperature

0.133MeanOxygen saturation

0.126Standard deviation deltaOxygen saturation

0.106MeanHeart rate

0.052Mean absolute deltaBody temperature

0.046Median absolute deltaHeart rate

0.042MeanRespiratory rate

0.032MeanMean blood pressure

0.022Kurtosis deltaBody temperature

0.022Maximum absolute deltaMean blood pressure

0.019Maximum absolute deltaDiastolic blood pressure

0.018Maximum deltaMean blood pressure

0.017Kurtosis absolute deltaRespiratory rate

0.016Maximum absolute deltaSystolic blood pressure

0.013MeanDiastolic blood pressure

0.013MeanSystolic blood pressure

0.011Median absolute deltaRespiratory rate

0.010Maximum absolute deltaOxygen saturation

0.009Maximum deltaDiastolic blood pressure

0.006Maximum deltaSystolic blood pressure

0.004Minimum absolute deltaHeart rate

Performance of the Prediction Model
The models presented in this study and those developed in a
previous study are shown in Table 6. The following 2 model
types were developed based on the onset point: a prediction
model that predicts LONS occurrence 48 hours earlier and a
detection model that discovers LONS at the time of
measurement. The overall performance of the presented model
was higher than that of the model presented in previous studies
[12,14]. Compared with the NICU sepsis prediction model of
MIMIC-III, which has the same data source, the model
developed in this study showed a high performance despite the
relatively large number of patients. When comparing the model

performance, the gradient boosting of the boost type linking
multiple week estimators showed an AUROC of 0.881, APRC
of 0.536, and F1 score of 0.625 for the prediction model, while
the detection model showed a high performance at an AUROC
of 0.877, APRC of 0.567, and F1 score of 0.653. The logistic
regression and multilayer perceptron with L2 penalty showed
an AUROC of 0.874 and 0.860, APRC of 0.558 and 0.496, and
F1 scores of 0.593 and 0.542, respectively, for the prediction
model, whereas the detection model showed AUROC of 0.874
and 0.860, APRC of 0.558 and 0.534, and F1 scores of 0.615
and 0.595, respectively, which showed an overall higher
performance than the existing LONS prediction models.
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Table 6. Performance results of the prediction models (microaverage).

NPVgPPVfWeighted-F1eF1dAPRCcAUROCbAccuracy aForecast (h)Model (Validation data source)

Proposed optimization algorithm LONSh prediction model (MIMIC-III)i

0.9580.3950.8350.5220.4460.8610.81248Logistic regression

0.9640.2830.7430.4240.3940.8210.69448Gaussian Naïve Bayes

0.9500.3890.8330.5040.4490.8410.81148Decision tree classifier

0.8740.5270.8220.1310.3670.8030.86748Extra tree classifier

0.8830.4690.8350.2510.3350.7710.86348Bagging classifier

0.8790.5140.8310.2050.3710.8050.86748Random forest classifier

0.9440.4070.8420.5070.4210.8310.82548AdaBoostj classifier

0.9390.4450.8560.5220.4620.8590.84548Gradient boosting classifier

0.9500.3890.8330.5040.4490.8410.81148Multilayer perceptron classifier

Proposed optimization algorithm detection model (MIMIC-III)

0.9430.5010.8140.6190.5680.8620.7980-48Logistic regression

0.9420.3800.7200.5230.4920.8060.6900-48Gaussian Naïve Bayes

0.8390.5720.7860.3760.3060.6140.8120-48Decision tree classifier

0.8130.6830.7480.1800.4910.7940.8090-48Extra tree classifier

0.8310.5920.7770.3270.4610.7740.8120-48Bagging classifier

0.8270.6560.7750.3020.5130.8250.8170-48Random forest classifier

0.9140.5290.8220.5980.5130.8350.8130-48AdaBoost classifier

0.9190.5630.8360.6240.5920.8680.8300-48Gradient boosting classifier

0.9350.5020.8130.6110.5580.8490.7990-48Multilayer perceptron classifier

aAccuracy: (true positive + true negative) / (positive + negative).
bAUROC: area under the receiver operating characteristic.
cAPRC: area under the precision recall curve.
dF1: harmonic mean of precision and recall.
eWeighted-F1: macro-F1 measurement.
fPPV: positive predictive value.
gNPV: negative predictive value.
hLONS: late-onset neonatal sepsis.
iMIMIC-III: Medical Information Mart for Intensive Care III.
jAdaBoost: adaptive boosting.

Discussion

This study showed that when the biosignals recorded in EMR
are used to select and learn features based on the presented
algorithm, it is possible to produce a model that can predict
LONS 48 hours earlier. Our model also showed a higher or
similar performance to the high-resolution model of previous
studies. The vital sign–based prediction model, which was based
on EMR, showed a model performance that exceeded the model
that learned based on the laboratory test, which was presented
by Mani et al [14]. When compared with the same classifier,
the ROC of the prediction model with our random forest
algorithm was 0.805, whereas that of the random forest using
the laboratory tests of Mani et al [14] was 0.650, with the vital
sign–based learning model showing higher performance.
Stanculescu et al’s [12] autoregressive hidden Markov model
showed an F1 score of 0.690 and APRC of 0.63, which showed

higher performance compared to the vital sign–based prediction
model that was based on EMR in this study. However, when
compared to the detection model, our vital sign–based prediction
model that was based on EMR showed a high overall
performance. Even if the ROC of the heart rate characteristics
was 0.72-0.77, the vital sign–based prediction model recorded
in EMR has a higher predictive accuracy than the
electrocardiogram-based presentation model [10]. The presented
model is expected to show a high contribution even in
environments where high-resolution biometric data cannot be
collected or where blood culture and laboratory tests cannot be
performed regularly. The feature selection presented in this
study showed a robust performance compared to the wrapper
and embedded method feature selections, which are mainly used
in the existing machine learning. Through the selected feature,
the main physiomarker can be extracted conversely from EMR.
In particular, for preterm infants whose definitions for the
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normal range of vital signs are insufficient, statistical variables
such as biosignal delta and kurtosis over 24 hours can be used
as a basis for classifying a patient’s condition. Blood pressure
was not used as a key indicator because of the different patient
criteria, but it can be used as a major feature by using statistical
processing. Moreover, the contribution of the respiratory rate,
which was expected to be a key indicator, was low. This is
probably because there was a slight change in the respiratory
rate of the infants owing to the intervention and ventilation
procedures. The correlation coefficient and cross-correlation,
which were expected to be important, showed low predictability
in low-resolution EMR data. However, they are expected to
yield significant results with a high-resolution data set. The vital
sign–based prediction model developed in this study has low
interpretability, similar to the deep learning and machine
learning prediction models in previous studies [12,14]. However,
the feature selection presented in this study shows a high
performance in linear classifiers such as logistic regression and
shows no significant change in performance in other classifiers.
If we take advantage of this, applying the feature selection to
models such as the fully connected conditional random field
and Bayesian inference that have high interpretability can solve
the abovementioned problem. Given that the selected feature
has dozens of feature spaces, compared to the hundreds of
feature spaces in the previous models, simply looking at the
model’s input variable will have sufficiently high
interpretability.

This study has the following limitations. First, external
validation is required because the training and test data sets
were created within the MIMIC-III database. N-fold cross
validation was performed to reduce data bias as much as
possible, but the results may vary depending on the clinician’s
recording cycle, pattern, and policy. Therefore, further research
requires progress on whether the model generated by the
algorithm is equally applicable to the other EMR databases.
Second, the limitation about the data extraction was that the
prediction model was generated only with noninvasive signs.
This was because the number of noninvasive measurements
was relatively higher than that of invasive measurements and
thus was extracted from most patients. However, an invasive
measurement method has the advantage of providing an accurate
measurement value; thus, it is performed for patients requiring
intensive observation. In future, it is necessary to study whether
there is an improvement in performance when the invasive
measurement method is applied to the prediction model of this
study. Third, infants without infection may have been included
in this study or the timing of sepsis onset might not have been
recorded correctly. In clinical practice, empirical antibiotic
treatment may be administered to noninfected infants with
symptoms of sepsis to reduce mortality. Therefore, there is a
limitation that false-positive sepsis can occur. In addition, since
the MIMIC-III database covers the period from 2001 to 2008,
the data may differ by patient population, treatment, and sepsis
definition. Fourth, in the vital sign–based prediction model

developed in this study, only multilayer perceptron was applied
as a deep learning model. In addition, the performance presented
in this study is likely to be lower than the maximum performance
that can be modeled because the vital sign–based prediction
model that was based on EMR developed in this study is a
default model with no hyperparameter tuning. Therefore,
advanced deep learning models should be applied to develop
sophisticated and accurate prediction models in future studies.
Lastly, our model could not be compared with the risk score
model and the medical guidelines used in clinical practice. In
clinical practice, the results of the hematology tests such as
complete blood cell count, immature neutrophil to total
neutrophil ratio, and polymorphonuclear leukocyte counts are
mainly applied. In the MIMIC-III database used in this study,
there was not enough data to record the results of the hematology
test as a score model, which makes it difficult to directly
compare the performance with the prediction model of the study.
Further, ethnicity, gender, and immaturity might affect the
outcomes since each factor affects the incidence of sepsis.
Previous studies have shown that low birth weight and male
gender as risk factors of infection could affect the probability
of bloodstream infection. Ethnicity did not seem to directly
affect the incidence of sepsis, but the sepsis incidence is different
according to the community income level. Therefore, if the
aforementioned characteristics of the infants are different from
the population of this study, then there is a possibility of
obtaining different results. Moreover, the MIMIC-III database
lacks the number of infant samples that can be configured for
each condition, and it is difficult to show the difference in the
results. Nevertheless, acceptable results will be obtained again
if the proposed algorithm is reperformed for a specific
population. In addition, although the gene type was not recorded
in the MIMIC-III database and could not be included, research
on gene types should be conducted in the future. If the vital
sign–based prediction model that was based on EMR developed
in this study is applied to clinical sites, patients with a high
LONS risk can be identified up to 48 hours in advance with
high accuracy based on the nonregular charts. This could be the
basis for triage of patients with a high LONS risk. Combining
the predicted results of this algorithm with vital signs
traditionally used in clinical sites and test results will help
clinicians reach an augmented decision.

In conclusion, we developed a prediction model after generating
a key feature with feature selection presented in the EMR data.
By doing so, a vital sign–based prediction model that was based
on EMR achieved a high prediction performance and robustness
compared to the previous feature selection. This research model
is expected to significantly reduce the mortality of patients with
LONS, and sophisticated predictions can be made through the
deep learning model and model optimization. However, the
limitations of data extraction and the need to construct a data
collection environment remain as the major challenges in
applying predictive models in clinical practice. Thus, further
research is needed to address these problems.
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