Advertisement
Learn more about this specific study/application/innovation directly from the authors of this article.
(opens a new window to the external site)Published on in Vol 7 , No 4 (2019) :Oct-Dec

Journals
- Lu T, Shi L, Zhan M, Fan F, Peng Z, Zhang K, Deng Z. Age estimation based on magnetic resonance imaging of the ankle joint in a modern Chinese Han population. International Journal of Legal Medicine 2020;134(5):1843 View
- Dallora A, Kvist O, Berglund J, Ruiz S, Boldt M, Flodmark C, Anderberg P. Chronological Age Assessment in Young Individuals Using Bone Age Assessment Staging and Nonradiological Aspects: Machine Learning Multifactorial Approach. JMIR Medical Informatics 2020;8(9):e18846 View
- Sabottke C, Breaux M, Spieler B. Estimation of age in unidentified patients via chest radiography using convolutional neural network regression. Emergency Radiology 2020;27(5):463 View
- Mauer M, Well E, Herrmann J, Groth M, Morlock M, Maas R, Säring D. Automated age estimation of young individuals based on 3D knee MRI using deep learning. International Journal of Legal Medicine 2021;135(2):649 View
- Morid M, Borjali A, Del Fiol G. A scoping review of transfer learning research on medical image analysis using ImageNet. Computers in Biology and Medicine 2021;128:104115 View
- Lee B, Lee M. Automated Bone Age Assessment Using Artificial Intelligence: The Future of Bone Age Assessment. Korean Journal of Radiology 2021;22(5):792 View
- Upalananda W, Wantanajittikul K, Na Lampang S, Janhom A. Semi-automated technique to assess the developmental stage of mandibular third molars for age estimation. Australian Journal of Forensic Sciences 2023;55(1):23 View
- Lu T, Qiu L, Ren B, Shi L, Fan F, Deng Z. Forensic age estimation based on magnetic resonance imaging of the proximal humeral epiphysis in Chinese living individuals. International Journal of Legal Medicine 2021;135(6):2437 View
- Martin D, Tong E, Kelly B, Yeom K, Yedavalli V. Current Perspectives of Artificial Intelligence in Pediatric Neuroradiology: An Overview. Frontiers in Radiology 2021;1 View
- Shan W, Sun Y, Hu L, Qiu J, Huo M, Zhang Z, Lei Y, Chen Q, Zhang Y, Yue X. Boosting algorithm improves the accuracy of juvenile forensic dental age estimation in southern China population. Scientific Reports 2022;12(1) View
- Demircioğlu A, Quinsten A, Forsting M, Umutlu L, Nassenstein K. Pediatric age estimation from radiographs of the knee using deep learning. European Radiology 2022;32(7):4813 View
- Ieki H, Ito K, Saji M, Kawakami R, Nagatomo Y, Takada K, Kariyasu T, Machida H, Koyama S, Yoshida H, Kurosawa R, Matsunaga H, Miyazawa K, Ozaki K, Onouchi Y, Katsushika S, Matsuoka R, Shinohara H, Yamaguchi T, Kodera S, Higashikuni Y, Fujiu K, Akazawa H, Iguchi N, Isobe M, Yoshikawa T, Komuro I. Deep learning-based age estimation from chest X-rays indicates cardiovascular prognosis. Communications Medicine 2022;2(1) View
- Li N, Cheng B, Zhang J. A Cascade Model with Prior Knowledge for Bone Age Assessment. Applied Sciences 2022;12(15):7371 View
- Deng X, Lu T, Liu G, Fan F, Peng Z, Chen X, Chen T, Zhan M, Shi L, Luo S, Zhang X, Liu M, Qiu S, Cong B, Deng Z. Forensic age prediction and age classification for critical age thresholds via 3.0T magnetic resonance imaging of the knee in the Chinese Han population. International Journal of Legal Medicine 2022;136(3):841 View
- ATASEVER S, AZGINOGLU N, TERZI D, TERZI R. A comprehensive survey of deep learning research on medical image analysis with focus on transfer learning. Clinical Imaging 2023;94:18 View
- Ording Muller L, Adolfsson J, Forsberg L, Bring J, Dahlgren J, Domeij H, Gornitzki C, Wernersson E, Odeberg J. Magnetic resonance imaging of the knee for chronological age estimation—a systematic review. European Radiology 2023 View