
Original Paper

Age Assessment of Youth and Young Adults Using Magnetic
Resonance Imaging of the Knee: A Deep Learning Approach

Ana Luiza Dallora1, MSc; Johan Sanmartin Berglund1, PhD; Martin Brogren2, MSc; Ola Kvist3, MD; Sandra Diaz

Ruiz3, MD, PhD; André Dübbel2, MSc; Peter Anderberg1, PhD
1Department of Health, Blekinge Institute of Technology, Karlskrona, Sweden
2Optriva AB, Stockholm, Sweden
3Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden

Corresponding Author:
Peter Anderberg, PhD
Department of Health
Blekinge Institute of Technology
Valhallavägen 1
Karlskrona, 37141
Sweden
Phone: 46 0734223736
Email: pan@bth.se

Abstract

Background: Bone age assessment (BAA) is an important tool for diagnosis and in determining the time of treatment in a
number of pediatric clinical scenarios, as well as in legal settings where it is used to estimate the chronological age of an individual
where valid documents are lacking. Traditional methods for BAA suffer from drawbacks, such as exposing juveniles to radiation,
intra- and interrater variability, and the time spent on the assessment. The employment of automated methods such as deep learning
and the use of magnetic resonance imaging (MRI) can address these drawbacks and improve the assessment of age.

Objective: The aim of this paper is to propose an automated approach for age assessment of youth and young adults in the age
range when the length growth ceases and growth zones are closed (14-21 years of age) by employing deep learning using MRI
of the knee.

Methods: This study carried out MRI examinations of the knee of 402 volunteer subjects—221 males (55.0%) and 181 (45.0%)
females—aged 14-21 years. The method comprised two convolutional neural network (CNN) models: the first one selected the
most informative images of an MRI sequence, concerning age-assessment purposes; these were then used in the second module,
which was responsible for the age estimation. Different CNN architectures were tested, both training from scratch and employing
transfer learning.

Results: The CNN architecture that provided the best results was GoogLeNet pretrained on the ImageNet database. The proposed
method was able to assess the age of male subjects in the range of 14-20.5 years, with a mean absolute error (MAE) of 0.793
years, and of female subjects in the range of 14-19.5 years, with an MAE of 0.988 years. Regarding the classification of
minors—with the threshold of 18 years of age—an accuracy of 98.1% for male subjects and 95.0% for female subjects was
achieved.

Conclusions: The proposed method was able to assess the age of youth and young adults from 14 to 20.5 years of age for male
subjects and 14 to 19.5 years of age for female subjects in a fully automated manner, without the use of ionizing radiation,
addressing the drawbacks of traditional methods.

(JMIR Med Inform 2019;7(4):e16291) doi: 10.2196/16291
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Introduction

Background
Bone age and skeletal maturity are closely related concepts that
measure the stage of bone development of an individual [1,2].
When compared to the chronological age, they aid in the
diagnosis and in determining the time of treatment of many
pediatric disorders related to orthodontics, orthopedics, and
endocrinology. Further, they are also used in estimations about
the final height of an individual [3].

From a legal standpoint, bone age assessment (BAA) also plays
an important role in the estimation of chronological age. In this
sense, the estimation of the bone age is employed when
determining if an individual is a minor in the absence of valid
documents, which is the case for numerous unaccompanied
minors seeking asylum [2], as well as in adoption, imputability,
and pedopornography judicial and civil issues [4]. The
estimation of chronological age is also used in age-related sports
competitions to guarantee fair play [5,6]. In all of these cases,
BAA is an important tool that is used to make important legal
decisions that can enormously affect an individual's life.

The traditional methods for performing BAA are the
Greulich-Pyle (GP) atlas and the Tanner-Whitehouse (TW)
scoring system. The GP atlas [7] comprises hand and wrist
radiograph reference images of subjects from 0 to 19 years of
age for males and 0 to 18 years of age for females. The process
for determining bone age is done by comparing the nearest
matching reference image in the atlas to the image of the
individual being assessed [3]. The TW scoring system [8] first
analyzes the hand and wrist radiograph of a subject and
categorizes the skeletal maturity scores of the ossification
centers of the radius, ulna, and 13 short bones of the hand and
carpals into stages ranging from A to I. Then, all of the stages
are aggregated into a numerical score that is converted to the
bone age [2].

Drawbacks of the Traditional Age-Assessment Methods
The drawbacks of the GP and TW methods derive from the fact
that they are done manually by radiologists; thus, they can be
prone to inter- and intrarater variability, in addition to being
time-consuming tasks [9,10].

Also, there is an important ethical issue related to submitting
healthy subjects to ionizing radiation without therapeutic
purposes, which is especially important in the case of assessing
if an individual is a minor for legal purposes [10]. This scenario
suggests that new approaches for the assessment of age should
be explored by research in order to address these drawbacks.

The use of radiation-free medical imaging can be achieved by
the employment of magnetic resonance imaging (MRI). An
additional advantage of MRI technology is that it supports the
manipulation of the image's contrast, granting the possibility of
highlighting different tissue types and allowing better
visualization of ossification centers [11,12]. Additionally, since
MRI images are volumetric, more information can be extracted
and analyzed when compared to 2D radiographs [13].

The issues related to rater variability and time spent in the
assessment are big motivators for the use of more automated
techniques like deep learning. Deep learning is a type of machine
learning technique, which refers to algorithms that are able to
learn a task from a set of training examples; in view of a new
set of data, this task can be reproduced with an acceptable
performance [14]. The use of machine learning for health
applications is not new and is broadly employed for disease
prediction and prognosis [14,15], genomics, proteomics, and
microarrays [16]; it has also been used to predict health care
utilization through Web search logs [17]. Contrary to many
machine learning techniques, deep learning methods perform
feature engineering: instead of having a domain expert specify
important data characteristics, it learns the informative
representations in the data and performs a task of classification
or regression [18,19]. When working with medical images, this
is especially advantageous since image features are difficult to
translate into descriptive means [20]. That is the reason why
the first applications of deep learning with health data were
aimed at analyzing medical images, specifically MRI images
of the brain for the prediction of Alzheimer disease and MRI
images of the knee to estimate the risk of osteoarthritis [21]. In
the specific area of BAA, most computerized approaches extract
features following established procedures (eg, TW or GP), which
can be limiting in terms of the information available in the image
[22]. When using deep learning, the algorithm finds the
important representations in the images without any constraint,
which could allow more features in the image to be considered
in the classification or regression task not previously known by
the current methods [22].

Goal of This Study
Taking into account the numerous settings in which the
estimation of chronological age is employed and their
importance and potential effect on individuals' lives, it is
important to address the drawbacks in the methods currently in
use. Thus, this paper proposes an automated approach for age
assessment of youth and young adults (14-21 years of age)
employing deep learning methods with MRI images of the knee.

The knee region aggregates four ossification centers—femur,
tibia, fibula, and patella—but it has not been explored very
much by the research in BAA, which is mostly focused on the
hand and wrist regions; this research makes use of radiograph
images, due to the impact the GP method, which is still
considered by many to be the gold standard for BAA [23]. The
choice of the knee region in this study was motivated by findings
in the research with MRI images that reported the presence of
cartilage signal intensity at the knee ossification centers in male
individuals from 17.8 to 30.0 years of age and female individuals
from 16.6 to 29.6 years of age, which could imply later fusion
of maturation centers [24]. Additionally, recent findings in the
research of BAA with MRI images of the knee also reported a
uniform spatial pattern of maturation of ossification centers in
the knee in both male and female individuals [12].
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Methods

Overview
The fully automated age-assessment method proposed in this
paper uses MRI images of the knee and the subjects'
chronological ages to train deep learning models for continuous
age estimation with convolutional neural networks (CNNs).

An overview of the method is shown in Figure 1. It comprises
two CNN models: the first one is responsible for selecting the
most informative images of an MRI sequence for age-assessment
purposes; these are then fed to the age-prediction CNN, which
outputs an estimated age. The remainder of this section further
details the process of training, deploying, and evaluating the
CNN models of the proposed method as well as the materials
used in the experiments.

Figure 1. Overview of the proposed automated age-assessment method. CNN: convolutional neural network; MRI: magnetic resonance imaging.

Recruitment
This study prospectively acquired MRI images of the knee
region of 402 volunteer subjects—221 males (55.0%) and 181
(45.0%) females—aged 14.0-21.5 years (see Table 1) between
2017 and 2018. It is important to note that throughout the text
of this paper, the mention of an age group X refers to an age
span from X to X.5 (eg, the age group 14 refers to an age span
of 14 to 14.5 years). The criteria used for subject recruitment
in the study were as follows:

1. Inclusion criteria: subjects (1) were born in Sweden and
(2) have a birth certificate verified by national authorities.

2. Exclusion criteria: subjects (1) have a history of bilateral
fractures or trauma near the growth plate, (2) have a history
of chronic disease or long-term medication, (3) exhibit
noncompliance during MRI examinations, (4) have resided
outside Sweden for more than 6 consecutive months, and
(5) experienced a past pregnancy or were pregnant at the
time of recruitment: all female volunteer subjects were
tested.

Table 1. Age distribution of the volunteer subjectsa (N=402).

Total, n (%)Subject age groupb, years, n (%)Gender

2120191817161514

221 (100)33 (14.9)35 (15.8)25 (11.0)24 (10.9)25 (11.3)31 (14.0)26 (11.8)22 (10.0)Male (N=221)

181 (100)24 (13.3)25 (13.8)12 (6.6)20 (11.0)27 (14.9)30 (16.6)21 (11.6)22 (12.2)Female (N=181)

402 (100)57 (14.1)60 (14.9)37 (9.2)44 (10.9)52 (12.9)61 (15.2)47 (11.7)44 (10.9)Total (N=402)

aAll data were acquired within a maximum of 6 months after the subjects' birth dates.
bAge group X refers to an age span from X to X.5 (eg, the age group 14 refers to an age span of 14 to 14.5 years).

Magnetic Resonance Imaging Examinations
The MRI examinations were performed on 1.5 Tesla whole-body
MRI scanners with dedicated knee coils. The images were taken
from the nondominant side of the knee; however, in the case of
previous fracture or trauma near these regions, the dominant
side was imaged.

The examinations were performed in two sites, with the same
protocol, 256 x 256-pixel resolution, and 160 x 160 mm field
of view. The following machinery was used:

1. Site 1: MAGNETOM Avanto Fit (Siemens Healthcare
Gmbh) and Achieva (Philips Healthcare) whole-body
scanners.

2. Site 2: SIGNA (GE Healthcare) whole-body scanner.

Data Privacy and Study Ethics
All acquired data were anonymized and stratified by age and
gender. The study was approved by the local ethics committee
and was conducted in accordance with the Declaration of
Helsinki. Written informed consent was acquired from all
subjects and legal guardians, in the case of minors.

Image Selection
Each MRI examination produced 17-35 images per subject,
however, not all of them were equally informative in regard to
the assessment of the age of an individual. To simplify the age
estimation learning task, only the best images were considered
for the CNN: Age Prediction model. To make the method fully
automated without any need for human input, a CNN classifier
was trained to be able to select the most informative images in
an MRI sequence. An informative image in the context of the
proposed method corresponds to the part of the bone that
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contains anatomical structures of interest, which include the
growth plate, epiphysis, and metaphysis. This classifier
corresponds to the CNN: Image Selection block in Figure 1.

The CNN architecture used was GoogLeNet [25], a model that
has been shown to generalize well to a wide variety of image
classification tasks, medical and otherwise [26].

To be able to train this classifier, one image from each MRI
sequence that had growth zones clearly visible was annotated
as informative. Also, one image from each MRI sequence in

which the growth zones were occluded by other tissue types
was selected and labelled as noninformative. Examples of
informative and noninformative images are shown in Figure 2.

The output of the CNN model is the confidence levels of the
two classes—informative and noninformative—for the given
MRI image. The confidence level is a continuous value between
0 and 1, where 1 is the highest confidence level and the
confidence levels of the two classes sum up to 1. In later steps,
only images with a confidence level for the informative class
above a threshold C on the test set were used.

Figure 2. Examples of informative and noninformative images from the same subject.

Age Prediction
For predicting the age of an individual from the MRI images,
another CNN model was built. This model corresponds to the
CNN: Age Prediction block in Figure 1. Seven different CNN
architectures were considered; these were as follows:
GoogLeNet [25], ResNet-50 [27], Inception-v3 [28], Visual
Geometry Group (VGG) [29], AlexNet [30], DenseNet [31],
and U-Net [32].

The final classification layer of these networks was replaced
with a linear scalar output providing the age estimation. The
only exception from this was U-Net, which is a fully connected
model without classification layers in the end. Here, the linear
scalar output was added after the last convolutional layer instead.

The age-prediction model takes an MRI image with N channels
as input, then outputs the estimated chronological age of the
subject. To create an image with N channels, a subset of the
MRI volume, centered on an image classified as informative,
is extracted (see Figure 3).

Figure 3. Example of how an N-channel image is created from one of the images in the magnetic resonance imaging (MRI) volume classified as
informative.
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Input images of 1-9 channels were tested. The idea was that the
model might be able to use information from neighboring images
to improve results and make the model more robust to mistakes
in the image-selection process.

Training the Models

Training and Evaluation
The Convolutional Architecture for Fast Feature Embedding
(Caffe) deep learning framework [33] was used to train the
models. Training and evaluation were done on Amazon Web
Services on an Elastic Compute Cloud (EC2) P3.2xlarge with
a Tesla V100 Nvidia graphics processing unit.

Optimization
The Adam optimizer [34] was used to minimize the
cross-entropy loss when training the classifier and the Euclidean
loss when training the regressor. Cross-entropy loss for binary
classification is calculated as follows:

–1/N ΣN
i=1yi × log(p(yi)) + (1–yi) × log(1–p(yi)) (1)

with N being the number of training samples per batch, y being
a binary indicator (0 or 1) of the correctness of classification
for an observation o being of class c, and p being the predicted
probability of an observation o being of class c. Euclidean loss
is calculated as follows:

1/2N ΣN
i=1 │|xi

1=xi
2|│ 22 (2)

with N being the number of training samples per batch, x1 the

estimated age, and x2 the verified chronological age.

Cross-Validation
All experiments were performed using six-fold cross-validation,
including the test set. The dataset was split into six equal-sized
parts, with data stratified for age and gender. This data partition
followed the procedure that all of the images from a subject
were assigned to a single fold. Four parts were used for training,

one part was used for validation during training, and one part
was used to finally evaluate and measure the model’s
performance. This was done to be able to evaluate the models
on the full dataset.

Before performing a full cross-validation, a sparse grid search
was performed for each model to find good hyperparameters.
This was done using the validation set of the first
cross-validation split only. The hyperparameters tuned during
the grid search were as follows: learning rate, weight decay,
momentum, dropout ratio, and batch size.

Transfer Learning
Both training from scratch and transfer learning were tested.
Transfer learning is a technique that, instead of using randomly
initialized weights, takes the weights from a CNN that has
already been trained to perform well on a generic task as a
starting point. The model is then adapted by carefully updating
the weights using the task-specific training data. This makes it
possible to leverage larger datasets to avoid overfitting when
the task-specific dataset is small [35,36]. All pretrained models
used in this paper were trained on ImageNet [37]. During the
task-specific training, the weights of all layers were updated.

Data Augmentation
Data augmentation is a technique that aims to synthetically
increase the size of the training set from existing data without
additional labelling work, using geometric or photometric
transformations, noise injections, and color jittering operations.
It is used to prevent overfitting when training CNNs on small
datasets [38,39].

In the proposed method, data augmentation was performed on
all training samples to increase the dataset. The images were
randomly cropped, shifted, rotated at a maximum of five
degrees, and scaled up to 20%. Figure 4 shows examples of the
applied data augmentation operations.

Figure 4. Examples of data augmentation operations applied in the proposed method.

Estimation
When estimating the age on the test set for each subject, all
images with a confidence higher than threshold C of 0.95 for
the informative class were used. Each of these test images were
used to create a number of copies with different augmentations
applied to each copy. All augmented test images were fed
through the network to produce one result each. Finally, the
results from the augmented versions of the images were used
to estimate a final result. This technique has been shown to

improve the performance of the predictions and is widely used
within deep learning [25].

In this method, each image was augmented 15 times, using the
same augmentations as during training, generating 15 new
images. If none of the images for a subject had a confidence
higher than the threshold, the image with the highest confidence
was used instead. This was the case for two subjects only. The
highest confidence value for these subjects were 0.91 and 0.81.
If more than 10 images had a confidence level higher than the
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threshold, only the 10 images with the highest confidence were
used in order to set a maximum limit on the processing time.

Age was estimated for all augmented images and, finally, the
median of all estimated ages for each subject was computed to
get the final prediction. For example, if a subject had eight
images with high-enough confidence, 120 augmented images
were created and 120 ages were estimated, of which the median
was used as the final estimated age.

Results

Overview
Hyperparameters and settings were tuned to optimize the models'
performance. This was done through a sparse grid search on the
first cross-validation split, as specified previously. The
validation set was used for tuning in order to avoid tuning
specifically toward the test set and thereby overestimating the
models' performance on new data. The final results reported in
this section were evaluated on the full dataset from the
cross-validation test sets in terms of the mean absolute error
(MAE), calculated as follows:

MAE = 1/n Σn
i=1 |xi–x| (3)

with n being the number of samples, xi being the estimated age,
and x being the verified chronological age.

Conclusions From Experiments
Fine-tuning pretrained models showed significantly better results
compared to training the models from scratch. The two
architectures that showed best results were GoogLeNet and
ResNet-50. Training on men and women subjects separately
gave better results for both groups compared to single training
using all data.

The best results were achieved using a confidence threshold C
of 0.95 in the image selection data preprocessing stage for
choosing the most informative MRI images. The results did not
change much using different thresholds. MAE differed only by
0.004 years when using thresholds in the range of 0.5-0.99.

Results were very similar when using MRI images with one or
three channels, but with more channels than three the
performance dropped. This can be due to the increasing number

of parameters in the models when using more channels, which
might lead to overfitting. Using one channel gave a slightly
better result, which is why we used this in our final models.

The hyperparameters that gave the best results were as follows:

1. Learning rate: 1e-4
2. Weight decay: 1e-2
3. Momentum: 0.83
4. Dropout ratio: 0.7 for GoogLeNet and 0.6 for ResNet-50
5. Batch size: 66 for GoogLeNet and 30 for ResNet-50

The best results were achieved when resizing the images to
256×256 pixels for both GoogLeNet and ResNet-50. Both these
architectures use cropped images of size 224×224 pixels as
input.

Results for the Best Models
The results for the experiments with the best-performing models,
GoogLeNet and ResNet-50, in terms of the MAE and SD per
age group is shown in Figure 5 and detailed in Table 2 below.
The acquisition of the MRI images happened in a window within
6 months from the subjects' birthdays. The best overall results
for male subjects were achieved by the GoogLeNet model using
knee MRI images. When training the age-prediction model for
women, only the architecture performing best on men was
considered.

There is a clear trend on all of the experiments among male
subjects in which the MAE increases substantially from the age
of 21. The same phenomenon occurs for the model among
women subjects but from the age of 20. These results lead us
to believe that after the ages of 20.5 for men and 19.5 for
women, no information regarding older ages can be extracted
from the MRI image data, regarding the knee region. This is
also supported by Figure 6 and Table 3, which show that the
mean estimated age planes out around these ages for the
respective genders. The models underestimated the age more
and more the older the subjects got after these ages. In
conclusion, the presented method is not able to estimate ages
above 20.5 for men and above 19.5 for women. Therefore, these
ages were removed in the results below, which focus on the
applicable age ranges for the models: 14 to 20.5 years for men
and 14 to 19.5 years for women.
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Figure 5. Comparison of the best-performing models: GoogLeNet and ResNet-50. MAE: mean absolute error.

Table 2. Results from the experiments with the best-performing models: GoogLeNet and ResNet-50.

Subject age groupa in years, MAEb (SD)Gender, model

2120191817161514

1.37 (0.59)0.51 (0.49)0.55 (0.70)1.14 (1.19)0.98 (1.17)0.99 (1.07)0.73 (0.80)0.74 (0.50)Men, GoogLeNet

1.51 (0.57)0.66 (0.63)0.54 (0.72)1.18 (1.18)1.15 (1.38)0.95 (1.11)0.75 (0.92)0.58 (0.50)Men, ResNet-50

1.75 (0.62)1.25 (0.73)0.54 (0.55)0.61 (0.70)1.09 (1.34)1.57 (1.08)0.89 (1.05)0.75 (0.56)Women, GoogLeNet

aAge group X refers to an age span from X to X.5 (eg, the age group 14 refers to an age span of 14 to 14.5 years).
bMAE: mean absolute error.
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Figure 6. Mean age and mean estimated age per age group with the best-performing model, GoogLeNet, on male and female subjects.

Table 3. Mean age and mean estimated age per age group by the best-performing model, GoogLeNet, on male and female subjects.

Subject age groupa, yearsGender

2120191817161514

21.1820.2319.1818.1817.2116.1915.2414.23Men, mean age

19.8019.8019.3618.7517.0916.6215.5214.96Men, mean estimated age

21.2120.2519.2918.1917.2216.1915.2414.22Women, mean age

19.0019.0018.7918.4517.7217.5015.6714.93Women, mean estimated age

aAge group X refers to an age span from X to X.5 (eg, the age group 14 refers to an age span of 14 to 14.5 years).

Results for the Best Models in the Applicable Age
Ranges
Figure 7 shows the MAE in years for the best models in their
applicable ranges: 14-20.5 years for men and 14-19.5 years for

women. The best achieved result for the age prediction of youth
and young adult individuals in this study corresponds to an
MAE of 0.793 years for men and 0.988 years for women, using
the GoogleNet architecture.
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Figure 7. Mean absolute error (MAE) of the best-performing models in the applicable age ranges.

Results for the GoogLeNet Model in the Applicable
Age Ranges for Male and Female Subjects
Figures 8 and 9 show the MAE for the GoogLeNet model
applied to male and female subjects, respectively, in the

applicable age ranges. It is interesting to notice that the age
range with the highest error occurs earlier for females (age group
of 16) compared to men (age group of 18). This goes in line
with previous knee studies where findings showed that women
mature earlier than men [40].

Figure 8. Mean absolute error (MAE) for the GoogLeNet model for male subjects in the applicable age ranges.
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Figure 9. Mean absolute error (MAE) for the GoogLeNet model for female subjects in the applicable age ranges.

Classification Performance of Minors Versus Adults
Experiments were also performed for classification of subjects
as being adults or minors, considering the age of 18 years old
as the adulthood threshold. This classification is especially
important in cases regarding the age assessment of minors from
a legal standpoint.

No new training of models was performed. Instead, the
classification of adults and minors was performed by applying
a threshold to the estimated age from the best-performing models
trained in the age-assessment experiments.

Three different strategies for setting the threshold were
evaluated:

1. Setting the threshold to increase the accuracy for minors
and sacrificing accuracy for adults.

2. Setting the threshold to get as equal accuracy as possible
for adults and minors.

3. Using the threshold of 18 years of age without any
modification.

The results for male subjects are shown in Figure 10 and Table
4. The same procedures and reasoning were also applied to the
women's case and the results are shown in Figure 11 and Table
5.
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Figure 10. Accuracies for minor versus adult classification of male subjects, using threshold to increase accuracy for minors.

Table 4. Accuracies for minor versus adult classification of male subjects.

Accuracy for adults, %Accuracy for minors, %Threshold in yearsStrategy for setting the threshold

88.098.118.73Using the threshold to get lower errors for minors

93.293.318.38Using the threshold to get as equal accuracy for adults and minors as possible

95.790.418.00Using estimated age without modifying the threshold

Figure 11. Accuracies for minor versus adult classification of female subjects, using threshold to increase accuracy for minors.

Table 5. Accuracies for minor versus adult classification of female subjects.

Accuracy for adults, %Accuracy for minors, %Threshold in yearsStrategy for setting the threshold

45.795.019.11Using threshold to get lower errors for minors

85.285.018.20Using threshold to get as equal accuracy for adults and minors as possible

88.977.018.00Using estimated age without modifying the threshold
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Discussion

Principal Findings
This paper proposed a fully automated method, free from
ionizing radiation, for age assessment based on MRI images of
the knee using CNNs. The method was able to assess the age
of male subjects in the range of 14-20.5 years of age, with an
MAE of 0.793 years, and of female subjects in the range of
14-19.5 years of age, with an MAE of 0.988 years.

The method developed in this paper addresses and proposes
solutions to the drawbacks in age-assessment research, which
currently deals with the following:

1. Ethical issues of submitting healthy individuals to ionizing
radiation for nontherapeutic purposes [10], since most of
the established methods (ie, GP and TW) and recently
published methods make use, mostly, of radiographs as the
analysis input [23]. This paper showed that it is possible to
achieve a good estimation of age by employing MRI images
instead.

2. Lowering the risk of intra- and interrater variability, which
can be very high when general radiologists are employed
in the assessment of age instead of high-expertise pediatric
radiologists [41,42]. Also, there is limited evidence that
contrasts with the findings of manual raters and automatic
systems regarding chronological age assessment, since most
of the published material is directed to predict bone age
[23]. However, a novel study reports a higher rate of false
positives in classifying adults—with a threshold of 18
years—from hand images for manual raters compared to a
deep learning system [43].

3. Time spent on assessment [9] addressed by the automation
of the proposed method, which is able to perform
evaluations in real time.

It is also important to mention that the proposed method in this
paper provides the estimation of chronological age based on
MRI images of the knee, contrary to most previous research,
which aimed at estimating bone age and evaluating the methods
using bone age and not chronological age. While the concept
of bone age is certainly useful and important in many clinical
settings, it was not conceived as a method to determine the
chronological age of an individual. It was used to examine the
developmental status of children and adolescents in comparison
to their known chronological age, which can be advanced or
delayed due to a multitude of factors that include chronic
illnesses, hormonal disorders, etc [7,10]. The widespread use
of BAA as an estimation of chronological age sometimes
confuses these concepts and they are erroneously used
interchangeably, as in many studies to justify the execution of
BAA to judicial and civil issues. Also, it can be argued that the
bone age attributed to an individual may be subjective and there
is no objective way to obtain a confirmation of the exact number.
In a clinical setting this may not be a problem since doctors can
work with secure thresholds, but if the estimation is done for
legal purposes it can become problematic, since decisions based
on this estimation, especially regarding the ages of adulthood,
can greatly affect the life of the individual in question.

Regarding our experiments, it is shown that for the male
subjects, after the age of 20.5 the model could not identify any
more information in the MRI images to discriminate the age of
individuals. The same phenomenon occurred at the age of 19.5
for female subjects, which could indicate that the
transformations that occur in the knee area related to the
maturation process occur earlier in women than in men. This
is in line with prior research on the knee region [12,24,44].

We also had satisfactory results for the problem regarding the
classification of minors versus adults, considering the threshold
of 18 years of age, which can be especially important in civil
and judicial scenarios. Misclassification of minors as adults can
often be viewed as much more problematic than the inverse,
since the imputability for the application of laws, as well as
guaranteed rights, may be different for these groups of
individuals and usually harsher for adults. Our method can
reduce that problem by distributing the errors depending on the
application, using a modifiable threshold applied to the estimated
age. Our method achieved an accuracy of 98.1% for male
subjects and 95.0% for female subjects when it came to correctly
classifying minors from the MRI images, when using a threshold
that increased the accuracy for minors and sacrificed accuracy
for adults.

From an operational point of view, the CNN technology
employed with transfer learning can be seen as an enabler in
performing research with medical images. The high cost for
medical imaging can result in smaller datasets for many studies,
but this caveat can be partially addressed when using the transfer
learning technology on pretrained CNNs that have learned
features from generic images. In this study, even if the features
changed during training they were not changed much in our
case. Generic features seem to work in a satisfactory way for
MRI images; it is just detecting edges, corners, and blobs, which
are relevant in MRI images as well as in generic images.
Therefore, there is a possibility of applying automated methods
even for smaller datasets. The study by Spampinato et al
reported similar conclusions, but for radiographs of the hand
[36].

Comparison With Prior Work
We propose a fully automated and radiation-free method for
chronological age assessment based on MRI images of the knee
region, employing deep learning techniques. We could not find
prior published work with the same attributes in the literature,
as not much work has been done in estimating chronological
age per se.

A recent study by Stern et al [43] employed MRI volumes of
the hand with CNNs in order to predict chronological age of
male subjects from 13 up to 19 years of age. They reported an
MAE of 0.82 years for subjects under 18 years of age. They
also reported results on majority age classification for male
subjects between the ages of 13 and 25 years. An error of 5%
for minors gave an error of 27.5% for adults, and an error of
1% for minors gave an error of 67.2% for adults. This can be
compared to our results where an error of 1.9% for minors gave
an error of 12% for adults on male subjects between the ages
of 14 and 22 years. In an earlier study by Stern et al [45], they
proposed a multi-factorial age estimation method using MRI
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volumes of the hand, clavicle, and teeth with CNNs. With this
approach, they managed to predict chronological age of male
subjects from 13 up to 25 years of age with an MAE of 1.01
years. They also reported results on majority age classification,
where an error of 0.5% for minors gave an error of 25.0% for
adults, and an error of 3% for minors gave an error of 18.1%
for adults. This can be compared to our results, where an error
of 1.9% for minors gave an error of 12% for adults on male
subjects between 14 and 22 years of age. The results on majority
age classification in these two papers by Stern et al [43,45] are
the best published results so far, using one or multiple body
parts. However, our results are significantly better even
compared to their method using MRI data from three different
body parts.

The study by Tang et al [46] proposed an artificial neural
network model for estimating the chronological age of subjects
(12-17 years old) using MRI images of the hand and wrist and
other skeletal maturity factors of 79 subjects. In this study, the
authors chose as the performance metric the comparison between
the mean chronological age for all subjects and the mean
estimated age for all subjects (ie, mean disparity), not calculating
the error per subject, which could be misleading. The mean
disparity measures whether there is a constant offset in the
estimations, not the performance of the model on a per-subject
level, like MAE does. A model can, therefore, have large errors
in age estimation for all subjects and high MAE but can still
have a small mean disparity; the MAE was not reported in this
paper. Additionally, the reported results were on the validation
set, probably due to the small sample size. In this fashion, the
authors reported a mean disparity of 0.1 years between the
estimated skeletal age and the chronological age.

Prior published methods for BAA that employed automated
methods still focused mostly on the hand and wrist regions for
the age assessment and made heavy use of radiographs as the
input for their systems, as reported by a recent systematic
literature review (SLR) and meta-analysis on BAA systems
[23].

In this SLR, only two studies were reported to have made
assessments based on the knee. The study by O’Connor et al
[44] proposed a scoring system based on the assessment of knee
radiographs as to the stage of epiphyseal fusion of the femur,
tibia, and fibula on subjects from 9 to 19 years of age, employing
regression model-building techniques. This study reported
residuals of more than 2 bone-age years for both male and
female individuals. The study by Fan et al [24] aimed to
compare the age assessment based on the knee region from
radiographs and MRI images on subjects from 11 to 25 years
of age. They built regression models for bone age based on the
scoring system by Krämer et al [47] for both image modalities,

yielding better results for the MRI images, achieving R2 values
(eg, the variance in the dependent variable that is predicted from
the independent variables in regression models) of 0.634 and
0.654 for female and male subjects, respectively.

On the choice of medical imaging, the referred SLR reported
only three studies that built systems for BAA based on MRI
images; one of these was the study by Tang et al [46], mentioned
previously. The study by Urchsler et al [13] designed a system

with the deep learning technology to automatically locate the
ossification centers on MRI images of the hand and wrist to
assess the bone age of individuals, 13-20 years of age, with
random forests. This study obtained an MAE of 0.850 bone-age
years. The study by Hillewig et al [48] obtained MRI images
from the clavicle and radiograph images from the hand and
wrist of 220 subjects, 16-26 years of age, and evaluated these
regions according to the Schmeling et al [49] and Kreitner et al
[50] scoring systems for the clavicle and the hand and wrist,
respectively. The study concluded that the assessment of the
clavicle alone was not sufficient to discriminate individuals as
younger or older than 18 years of age, thus requiring the
information from the hand and wrist for the assessment.

Another noninvasive and radiation-free medical imaging method
for the estimation of age that is reported in the literature is the
assessment of retinal images, which is an approach that provides
diagnostic evidence about important diseases, such as
cardiovascular disease and diabetes. Retinal images were
assessed with deep learning in the study by Poplin et al [51] in
predicting a variety of cardiovascular risk factors, including
age, which achieved an MAE of 3.26 years. Retinal images
were also assessed by Ting et al [52] in estimating the
prevalence and systematic risk factors for diabetic retinopathy,
which included young age.

In regard to approaches that make use of deep learning methods
in the field of BAA, the biggest initiative posed in recent years
was done so by the Radiological Society of North America
(RSNA) for the prediction of bone age: the RSNA 2018
Pediatric Bone Age Challenge [53]. This challenge aimed to
encourage participants to develop algorithms that could
most-accurately determine the bone age of subjects from 0 to
19 years of age, providing a database of around 12,000
radiograph images of the hand and wrist, labeled as to their
bone age [53]. The participants proposed CNN models, like the
ones by Iglovikov et al [54], Zhao et al [55], and Ren et al [22],
which achieved MAEs of 7.52, 7.66, and 5.2 months. However
good the obtained results were, they were not comparable to
our results, since our aim was to predict the chronological age
of a subject, and the RSNA project’s goal was to predict the
bone age. It is also important to note that although these studies
made use of large-enough sample sizes, the data were not
uniformly distributed, as only 0.1% of the dataset was composed
of individuals of 18 and 19 years of age. Additionally, Dallora
et al [23] provided a meta-analysis on the performances based
on seven studies, which contained all three deep learning studies
mentioned previously, where the age ranges were mostly within
0-19 years of age and the performance metrics were given in
MAE (bone-age months). The weighted average by the dataset
size resulted in 9.96 MAE (bone-age months), which is higher
than the results presented in this paper.

Limitations
Regarding the limitations of this study, it could be argued that
the sample size would not be big enough to be generalizable;
therefore, we employed methods to ensure that the models did
not overfit by using test sets separated from the training and
validation sets. The results showed that the model was able to
generalize to new data in the test sets. Additionally, further
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work will be directed to the collection of more data, which may
improve the precision and MAE of our models.

Also, we aimed at having a uniform number of subjects for each
age group, which was achieved by the data acquisition process;
an exception was for the 19-year-old female subjects, who
accounted for only 12 subjects, which could be seen as a caveat
to the female model.

Additionally, the acquisition of ages for the first half year from
each age group may interfere with the estimation accuracy of
the minor versus adult classification. The largest impact occurs
for the ages closest to 18 years. The missing data for those
17.5-17.99 years of age is important and we plan to collect new
data to complement those ages in future work. Concerning the

MAE numbers, these missing ages do not have as much impact
as for the accuracy numbers.

Finally, the method was built upon data from healthy youth and
young adult subjects and the effect of disorders that can affect
growth was not explored.

Conclusions
This paper proposed a model for the estimation of chronological
age in youth and young adults using MRI images of the knee.
Our method demonstrated good results and addressed the biggest
drawbacks in the traditional age-estimation procedures that are
still currently in use. Our results on majority age classification
were significantly better than the best results previously
published.
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