Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Published on 07.05.19 in Vol 7, No 2 (2019): Apr-Jun

This paper is in the following e-collection/theme issue:

Works citing "Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review"

According to Crossref, the following articles are citing this article (DOI 10.2196/12239):

(note that this is only a small subset of citations)

  1. Retson TA, Eghtedari M. Computer-Aided Detection/Diagnosis in Breast Imaging: A Focus on the Evolving FDA Regulations for Using Software as a Medical Device. Current Radiology Reports 2020;8(6)
    CrossRef
  2. Yang Z, Dehmer M, Yli-Harja O, Emmert-Streib F. Combining deep learning with token selection for patient phenotyping from electronic health records. Scientific Reports 2020;10(1)
    CrossRef
  3. Leiter RE, Santus E, Jin Z, Lee K, Yusufov M, Chien I, Ramaswamy A, Moseley ET, Qian Y, Schrag D, Lindvall C. Deep natural language processing to identify symptom documentation in clinical notes for patients with heart failure undergoing cardiac resynchronization therapy. Journal of Pain and Symptom Management 2020;
    CrossRef
  4. Tan Y, Bacchi S, Casson RJ, Selva D, Chan W. Triaging ophthalmology outpatient referrals with machine learning: A pilot study. Clinical & Experimental Ophthalmology 2020;48(2):169
    CrossRef
  5. Chen X, Xie H, Cheng G, Poon LKM, Leng M, Wang FL. Trends and Features of the Applications of Natural Language Processing Techniques for Clinical Trials Text Analysis. Applied Sciences 2020;10(6):2157
    CrossRef
  6. Agaronnik ND, Lindvall C, El-Jawahri A, He W, Iezzoni LI. Challenges of Developing a Natural Language Processing Method With Electronic Health Records to Identify Persons With Chronic Mobility Disability. Archives of Physical Medicine and Rehabilitation 2020;
    CrossRef
  7. Wu S, Roberts K, Datta S, Du J, Ji Z, Si Y, Soni S, Wang Q, Wei Q, Xiang Y, Zhao B, Xu H. Deep learning in clinical natural language processing: a methodical review. Journal of the American Medical Informatics Association 2020;27(3):457
    CrossRef
  8. Gonem S, Janssens W, Das N, Topalovic M. Applications of artificial intelligence and machine learning in respiratory medicine. Thorax 2020;:thoraxjnl-2020-214556
    CrossRef
  9. Pilozzi A, Huang X. Overcoming Alzheimer’s Disease Stigma by Leveraging Artificial Intelligence and Blockchain Technologies. Brain Sciences 2020;10(3):183
    CrossRef
  10. Crowson MG, Hamour A, Lin V, Chen JM, Chan TCY. Machine learning for pattern detection in cochlear implant FDA adverse event reports. Cochlear Implants International 2020;:1
    CrossRef
  11. Gao S, Alawad M, Schaefferkoetter N, Penberthy L, Wu X, Durbin EB, Coyle L, Ramanathan A, Tourassi G, Reddi HV. Using case-level context to classify cancer pathology reports. PLOS ONE 2020;15(5):e0232840
    CrossRef
  12. Miotto R, Percha BL, Glicksberg BS, Lee H, Cruz L, Dudley JT, Nabeel I. Identifying Acute Low Back Pain Episodes in Primary Care Practice From Clinical Notes: Observational Study. JMIR Medical Informatics 2020;8(2):e16878
    CrossRef
  13. Shull JG. Digital Health and the State of Interoperable Electronic Health Records. JMIR Medical Informatics 2019;7(4):e12712
    CrossRef
  14. Uddin M, Wang Y, Woodbury-Smith M. Artificial intelligence for precision medicine in neurodevelopmental disorders. npj Digital Medicine 2019;2(1)
    CrossRef