Published on in Vol 11 (2023)

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/50221, first published .
Detection of Suicidal Ideation in Clinical Interviews for Depression Using Natural Language Processing and Machine Learning: Cross-Sectional Study

Detection of Suicidal Ideation in Clinical Interviews for Depression Using Natural Language Processing and Machine Learning: Cross-Sectional Study

Detection of Suicidal Ideation in Clinical Interviews for Depression Using Natural Language Processing and Machine Learning: Cross-Sectional Study

Journals

  1. Huang R, Yi S, Chen J, Chan K, Chan J, Chan N, Li S, Wing Y, Li T. Exploring the Role of First-Person Singular Pronouns in Detecting Suicidal Ideation: A Machine Learning Analysis of Clinical Transcripts. Behavioral Sciences 2024;14(3):225 View
  2. Zhang Y, Folarin A, Dineley J, Conde P, de Angel V, Sun S, Ranjan Y, Rashid Z, Stewart C, Laiou P, Sankesara H, Qian L, Matcham F, White K, Oetzmann C, Lamers F, Siddi S, Simblett S, Schuller B, Vairavan S, Wykes T, Haro J, Penninx B, Narayan V, Hotopf M, Dobson R, Cummins N. Identifying depression-related topics in smartphone-collected free-response speech recordings using an automatic speech recognition system and a deep learning topic model. Journal of Affective Disorders 2024;355:40 View
  3. Kazi Golam Rabbany , Aisultan Shoiynbek , Darkhan Kuanyshbay , Assylbek Mukhametzhanov , Akbayan Bekarystankyzy , Temirlan Shoiynbek . A REVIEW ON MACHINE LEARNING APPROACHES FOR THE DETECTION OF SUICIDAL TENDENCIES. World Science 2024;(3(85)) View
  4. Oliveira F, Neri D, Ribeiro K, Oliveira L, Santos E, Pereira M, Lima S. O USO DA INTELIGÊNCIA ARTIFICIAL NA IDENTIFICAÇÃO DO PACIENTE PSIQUIÁTRICO COM TENDÊNCIA SUICIDA. Revista Contemporânea 2024;4(10):e6253 View