Published on in Vol 10, No 8 (2022): August
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/38943, first published
.
Journals
- Choudhary S, Srinivasan G. The Importance of Using Binary Classification Models in Predicting Depression from a Machine Learning Perspective. Digital Medicine and Healthcare Technology 2022;2022:1 View
- Khoo L, Lim M, Chong C, McNaney R. Machine Learning for Multimodal Mental Health Detection: A Systematic Review of Passive Sensing Approaches. Sensors 2024;24(2):348 View
- Rochotte J, Sanap A, Silenzio V, Singh V. Predicting anxiety using Google and Youtube digital traces. Emerging Trends in Drugs, Addictions, and Health 2024;4:100145 View
- dos Santos M, Heckler W, Bavaresco R, Barbosa J. Machine learning applied to digital phenotyping: A systematic literature review and taxonomy. Computers in Human Behavior 2024;161:108422 View
- Liu W, Zhou B, Li G, Luo X. Enhanced diagnostics for generalized anxiety disorder: leveraging differential channel and functional connectivity features based on frontal EEG signals. Scientific Reports 2024;14(1) View
- Mulinari S. Aligning digital biomarker definitions in psychiatry with the National Institute of Mental Health Research Domain Criteria framework. NPP—Digital Psychiatry and Neuroscience 2024;2(1) View