Published on in Vol 9, No 7 (2021): July

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/24651, first published .
Candidemia Risk Prediction (CanDETEC) Model for Patients With Malignancy: Model Development and Validation in a Single-Center Retrospective Study

Candidemia Risk Prediction (CanDETEC) Model for Patients With Malignancy: Model Development and Validation in a Single-Center Retrospective Study

Candidemia Risk Prediction (CanDETEC) Model for Patients With Malignancy: Model Development and Validation in a Single-Center Retrospective Study

Journals

  1. Kim S, Mun S, Kang J, Moon C, Kim H, Lee H. Multifaceted Evaluation of Antibiotic Therapy as a Factor Associated with Candidemia in Non-Neutropenic Patients. Journal of Fungi 2023;9(2):270 View
  2. Li J, Li Y, Gao Y, Niu X, Tang M, Fu C, Wang Z, Liu J, Song B, Chen H, Gao X, Guan X, Parameshachari B. [Retracted] Prediction of Prognostic Risk Factors in Patients with Invasive Candidiasis and Cancer: A Single‐Centre Retrospective Study. BioMed Research International 2022;2022(1) View
  3. Giacobbe D, Mora S, Signori A, Russo C, Brucci G, Campi C, Guastavino S, Marelli C, Limongelli A, Vena A, Mikulska M, Marchese A, Di Biagio A, Giacomini M, Bassetti M. Validation of an Automated System for the Extraction of a Wide Dataset for Clinical Studies Aimed at Improving the Early Diagnosis of Candidemia. Diagnostics 2023;13(5):961 View
  4. Fernandes G, Choi A, Schauer J, Pfammatter A, Spring B, Darwiche A, Alshurafa N. An Explainable Artificial Intelligence Software Tool for Weight Management Experts (PRIMO): Mixed Methods Study. Journal of Medical Internet Research 2023;25:e42047 View
  5. Giacobbe D, Marelli C, Mora S, Guastavino S, Russo C, Brucci G, Limongelli A, Vena A, Mikulska M, Tayefi M, Peluso S, Signori A, Di Biagio A, Marchese A, Campi C, Giacomini M, Bassetti M. Early diagnosis of candidemia with explainable machine learning on automatically extracted laboratory and microbiological data: results of the AUTO-CAND project. Annals of Medicine 2023;55(2) View
  6. Cao Y, Li Y, Wang M, Wang L, Fang Y, Wu Y, Liu Y, Liu Y, Hao Z, Gao H, Kang H. Interpretable machine learning for predicting risk of invasive fungal infection in critically ill patients in the intensive care unit: A retrospective cohort study based on MIMIC-IV database. Shock 2024 View
  7. Giacobbe D, Marelli C, Mora S, Cappello A, Signori A, Vena A, Guastavino S, Rosso N, Campi C, Giacomini M, Bassetti M. Prediction of candidemia with machine learning techniques: state of the art. Future Microbiology 2024;19(10):931 View
  8. Kaminski K, Skora M, Krzyściak P, Stączek S, Zdybicka-Barabas A, Cytryńska M. Synthesis and Study of Antifungal Properties of New Cationic Beta-Glucan Derivatives. Pharmaceuticals 2021;14(9):838 View
  9. Nham E, Kim S, Ko J, Huh K, Cho S, Kang C, Chung D, Peck K. Diagnostic performance of the (1-3)-β-d-glucan assay in patients with different risks for invasive fungal diseases. Medical Mycology 2024;62(8) View
  10. Meng Q, Chen B, Xu Y, Zhang Q, Ding R, Ma Z, Jin Z, Gao S, Qu F, Giordano G. A machine learning model for early candidemia prediction in the intensive care unit: Clinical application. PLOS ONE 2024;19(9):e0309748 View
  11. Bopche R, Gustad L, Afset J, Ehrnström B, Damås J, Nytrø Ø, Zhang Q. Leveraging explainable artificial intelligence for early prediction of bloodstream infections using historical electronic health records. PLOS Digital Health 2024;3(11):e0000506 View