Published on in Vol 9, No 3 (2021): March
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/25635, first published
.
Journals
- Boulenger de Hauteclocque A, Ferrer L, Ambrosetti D, Ricard S, Bigot P, Bensalah K, Henon F, Doumerc N, Méjean A, Verkarre V, Dariane C, Larré S, Champy C, de La Taille A, Bruyère F, Rouprêt M, Paparel P, Droupy S, Fontenil A, Patard J, Durand X, Waeckel T, Lang H, Lebâcle C, Guy L, Pignot G, Durand M, Long J, Charles T, Xylinas E, Boissier R, Yacoub M, Colin T, Bernhard J. Machine‐learning approach for prediction of pT3a upstaging and outcomes of localized renal cell carcinoma (UroCCR‐15). BJU International 2023;132(2):160 View
- Kowalewski K, Egen L, Fischetti C, Puliatti S, Juan G, Taratkin M, Ines R, Sidoti Abate M, Mühlbauer J, Wessels F, Checcucci E, Cacciamani G. Artificial intelligence for renal cancer: From imaging to histology and beyond. Asian Journal of Urology 2022;9(3):243 View
- Parwani A, Patel A, Zhou M, Cheville J, Tizhoosh H, Humphrey P, Reuter V, True L. An update on computational pathology tools for genitourinary pathology practice: A review paper from the Genitourinary Pathology Society (GUPS). Journal of Pathology Informatics 2023;14:100177 View
- Staffini A, Svensson T, Chung U, Svensson A. Heart Rate Modeling and Prediction Using Autoregressive Models and Deep Learning. Sensors 2021;22(1):34 View
- Kim H, Byun S, Kim J, Jeong C, Kwak C, Hwang E, Kang S, Chung J, Kim Y, Ha Y, Hong S. Machine learning-based prediction model for late recurrence after surgery in patients with renal cell carcinoma. BMC Medical Informatics and Decision Making 2022;22(1) View
- Sharma R, Kannourakis G, Prithviraj P, Ahmed N. Precision Medicine: An Optimal Approach to Patient Care in Renal Cell Carcinoma. Frontiers in Medicine 2022;9 View
- Patel A, Mohanty S, Parwani A. Applications of Digital and Computational Pathology and Artificial Intelligence in Genitourinary Pathology Diagnostics. Surgical Pathology Clinics 2022;15(4):759 View
- Khene Z, Bigot P, Doumerc N, Ouzaid I, Boissier R, Nouhaud F, Albiges L, Bernhard J, Ingels A, Borchiellini D, Kammerer-Jacquet S, Rioux-Leclercq N, Roupret M, Acosta O, De Crevoisier R, Bensalah K, Pignot G, Ahallal Y, Lebacle C, Méjean A, Long J, Tillou X, Olivier J, Bruyère F, Charles T, Durand X, Lang H, Larre S. Application of Machine Learning Models to Predict Recurrence After Surgical Resection of Nonmetastatic Renal Cell Carcinoma. European Urology Oncology 2023;6(3):323 View
- Patel A, Shaker N, Mohanty S, Sharma S, Gangal S, Eloy C, Parwani A. Cultivating Clinical Clarity through Computer Vision: A Current Perspective on Whole Slide Imaging and Artificial Intelligence. Diagnostics 2022;12(8):1778 View
- Rasmussen R, Sanford T, Parwani A, Pedrosa I. Artificial Intelligence in Kidney Cancer. American Society of Clinical Oncology Educational Book 2022;(42):300 View
- Barkan E, Porta C, Rabinovici-Cohen S, Tibollo V, Quaglini S, Rizzo M. Artificial intelligence-based prediction of overall survival in metastatic renal cell carcinoma. Frontiers in Oncology 2023;13 View
- Timofeeva E, Azilgareeva С, Morozov A, Taratkin M, Enikeev D. Use of artificial intelligence in the diagnosis, treatment and surveillance of patients with kidney cancer. Urology Herald 2023;11(3):142 View
- Margue G, Ferrer L, Etchepare G, Bigot P, Bensalah K, Mejean A, Roupret M, Doumerc N, Ingels A, Boissier R, Pignot G, Parier B, Paparel P, Waeckel T, Colin T, Bernhard J. UroPredict: Machine learning model on real-world data for prediction of kidney cancer recurrence (UroCCR-120). npj Precision Oncology 2024;8(1) View