Published on in Vol 9, No 1 (2021): January
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/22148, first published
.
Journals
- Zhong T, Zhuang Z, Dong X, Wong K, Wong W, Wang J, He D, Liu S. Predicting Antituberculosis Drug–Induced Liver Injury Using an Interpretable Machine Learning Method: Model Development and Validation Study. JMIR Medical Informatics 2021;9(7):e29226 View
- Nwanosike E, Conway B, Merchant H, Hasan S. Potential applications and performance of machine learning techniques and algorithms in clinical practice: A systematic review. International Journal of Medical Informatics 2022;159:104679 View
- Morgan-Benita J, Galván-Tejada C, Cruz M, Galván-Tejada J, Gamboa-Rosales H, Arceo-Olague J, Luna-García H, Celaya-Padilla J. Hard Voting Ensemble Approach for the Detection of Type 2 Diabetes in Mexican Population with Non-Glucose Related Features. Healthcare 2022;10(8):1362 View
- Fujihara K, Sone H. Machine Learning Approach to Drug Treatment Strategy for Diabetes Care. Diabetes & Metabolism Journal 2023;47(3):325 View
- Zou X, Liu Y, Ji L. Review: Machine learning in precision pharmacotherapy of type 2 diabetes—A promising future or a glimpse of hope?. DIGITAL HEALTH 2023;9 View
- Khodve G, Banerjee S. Artificial Intelligence in Efficient Diabetes Care. Current Diabetes Reviews 2023;19(9) View
- Kumar A, Bawa S, Kumar N. iDP: ML-driven diabetes prediction framework using deep-ensemble modeling. Neural Computing and Applications 2024;36(5):2525 View
- Kim D, Choi H, Lee D, Kim M, Kim Y, Han S, Heo Y, Park J, Park J. A Deep Learning–Based Approach for Prediction of Vancomycin Treatment Monitoring: Retrospective Study Among Patients With Critical Illness. JMIR Formative Research 2024;8:e45202 View
- Eghbali-Zarch M, Masoud S. Application of machine learning in affordable and accessible insulin management for type 1 and 2 diabetes: A comprehensive review. Artificial Intelligence in Medicine 2024;151:102868 View