Published on in Vol 8, No 8 (2020): August
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/15932, first published
.
Journals
- Zhong T, Zhuang Z, Dong X, Wong K, Wong W, Wang J, He D, Liu S. Predicting Antituberculosis Drug–Induced Liver Injury Using an Interpretable Machine Learning Method: Model Development and Validation Study. JMIR Medical Informatics 2021;9(7):e29226 View
- Yijing L, Wenyu Y, Kang Y, Shengyu Z, Xianliang H, Xingliang J, Cheng W, Zehui S, Mengxing L. Prediction of cardiac arrest in critically ill patients based on bedside vital signs monitoring. Computer Methods and Programs in Biomedicine 2022;214:106568 View
- Alamgir A, Mousa O, Shah Z. Artificial Intelligence in Predicting Cardiac Arrest: Scoping Review. JMIR Medical Informatics 2021;9(12):e30798 View
- Kabra R, Israni S, Vijay B, Baru C, Mendu R, Fellman M, Sridhar A, Mason P, Cheung J, DiBiase L, Mahapatra S, Kalifa J, Lubitz S, Noseworthy P, Navara R, McManus D, Cohen M, Chung M, Trayanova N, Gopinathannair R, Lakkireddy D. Emerging role of artificial intelligence in cardiac electrophysiology. Cardiovascular Digital Health Journal 2022;3(6):263 View
- Nwanosike E, Conway B, Merchant H, Hasan S. Potential applications and performance of machine learning techniques and algorithms in clinical practice: A systematic review. International Journal of Medical Informatics 2022;159:104679 View
- Kim J, Choi A, Kim M, Hyun H, Kim S, Chang H. Development of a machine-learning algorithm to predict in-hospital cardiac arrest for emergency department patients using a nationwide database. Scientific Reports 2022;12(1) View
- Nwanosike E, Sunter W, Ansari M, Merchant H, Conway B, Hasan S. A Real-World Exploration into Clinical Outcomes of Direct Oral Anticoagulant Dosing Regimens in Morbidly Obese Patients Using Data-Driven Approaches. American Journal of Cardiovascular Drugs 2023;23(3):287 View
- Choi A, Chung K, Chung S, Lee K, Hyun H, Kim J. Advantage of Vital Sign Monitoring Using a Wireless Wearable Device for Predicting Septic Shock in Febrile Patients in the Emergency Department: A Machine Learning-Based Analysis. Sensors 2022;22(18):7054 View
- Li C, Zhang Z, Ren Y, Nie H, Lei Y, Qiu H, Xu Z, Pu X. Machine learning based early mortality prediction in the emergency department. International Journal of Medical Informatics 2021;155:104570 View
- Tang Q, Cen X, Pan C. Explainable and efficient deep early warning system for cardiac arrest prediction from electronic health records. Mathematical Biosciences and Engineering 2022;19(10):9825 View
- Hammad H, Rizani K, Rachmadi A, SPN E, Rizani A, Marwansyah M, Wilotono N. Cardiopulmonary Resuscitation Capacity Building Training for High School Students in Martapura, Banjar Regency. International Journal of Community Service Learning 2023;7(1):9 View
- Sadegh-Zadeh S, Sakha H, Movahedi S, Fasihi Harandi A, Ghaffari S, Javanshir E, Ali S, Hooshanginezhad Z, Hajizadeh R. Advancing prognostic precision in pulmonary embolism: A clinical and laboratory-based artificial intelligence approach for enhanced early mortality risk stratification. Computers in Biology and Medicine 2023;167:107696 View
- Holmström L, Zhang F, Ouyang D, Dey D, Slomka P, Chugh S. Artificial Intelligence in Ventricular Arrhythmias and Sudden Death. Arrhythmia & Electrophysiology Review 2023;12 View
- Choi A, Choi S, Chung K, Chung H, Song T, Choi B, Kim J. Development of a machine learning-based clinical decision support system to predict clinical deterioration in patients visiting the emergency department. Scientific Reports 2023;13(1) View
- Lee H, Yang H, Ryu H, Jung C, Cho Y, Yoon S, Yoon H, Lee H. Real-time machine learning model to predict in-hospital cardiac arrest using heart rate variability in ICU. npj Digital Medicine 2023;6(1) View
- Kim Y, Koo J, Lee S, Song H, Lee M. Explainable Artificial Intelligence Warning Model Using an Ensemble Approach for In-Hospital Cardiac Arrest Prediction: Retrospective Cohort Study. Journal of Medical Internet Research 2023;25:e48244 View
- Hammad , Parellangi , Dharma K, Mallongi A, Palutturi S, Nugroho H, Sajidah A, Rizani K, Utami N, Fauzan R, Rasyid M. LAY PERSON PERCEPTIONS ON TEACHING BASIC LIFE SUPPORT USING ANDROID SMARTPHONES ON SOUTH BORNEO INDONESIA. Journal of Law and Sustainable Development 2024;12(8):e3872 View
- Hartge F, Skeete J, Pinedo A, Zeleke B, Khan A, Mekritthikrai R, Dye C. Multi-Faceted Approach to Ventricular Tachycardia: A Review of Management Strategies. Pharmacoepidemiology 2024;3(3):265 View
- Socias Crespí L, Gutiérrez Madroñal L, Fiorella Sarubbo M, Borges-Sa M, Serrano García A, López Ramos D, Pruenza Garcia-Hinojosa C, Martin Garijo E. Application of a machine learning model for early prediction of in-hospital cardiac arrests: Retrospective observational cohort study. Medicina Intensiva (English Edition) 2024 View
- Zhou H, Fang C, Pan Y. Development of a System for Predicting Hospitalization Time for Patients With Traumatic Brain Injury Based on Machine Learning Algorithms: User-Centered Design Case Study. JMIR Human Factors 2024;11:e62866 View
- Kim Y, Seo W, Lee S, Koo J, Kim G, Song H, Lee M. Early Prediction of Cardiac Arrest in the Intensive Care Unit Using Explainable Machine Learning: Retrospective Study. Journal of Medical Internet Research 2024;26:e62890 View
- Sridhar A, Cheung J, Lampert R, Silva J, Gopinathannair R, Sotomonte J, Tarakji K, Fellman M, Chrispin J, Varma N, Kabra R, Mehta N, Al-Khatib S, Mayfield J, Navara R, Rajagopalan B, Passman R, Fleureau Y, Shah M, Turakhia M, Lakkireddy D. State of the art of mobile health technologies use in clinical arrhythmia care. Communications Medicine 2024;4(1) View
Books/Policy Documents
- Woodman R, Mangoni A. Gerontechnology. A Clinical Perspective. View