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Abstract

Background: The development and application of clinical prediction models using machine learning in clinical decision support
systems is attracting increasing attention.

Objective: The aims of this study were to develop a prediction model for cardiac arrest in the emergency department (ED) using
machine learning and sequential characteristics and to validate its clinical usefulness.

Methods: This retrospective study was conducted with ED patients at a tertiary academic hospital who suffered cardiac arrest.
To resolve the class imbalance problem, sampling was performed using propensity score matching. The data set was chronologically
allocated to a development cohort (years 2013 to 2016) and a validation cohort (year 2017). We trained three machine learning
algorithms with repeated 10-fold cross-validation.

Results: The main performance parameters were the area under the receiver operating characteristic curve (AUROC) and the
area under the precision-recall curve (AUPRC). The random forest algorithm (AUROC 0.97; AUPRC 0.86) outperformed the
recurrent neural network (AUROC 0.95; AUPRC 0.82) and the logistic regression algorithm (AUROC 0.92; AUPRC=0.72). The
performance of the model was maintained over time, with the AUROC remaining at least 80% across the monitored time points
during the 24 hours before event occurrence.

Conclusions: We developed a prediction model of cardiac arrest in the ED using machine learning and sequential characteristics.
The model was validated for clinical usefulness by chronological visualization focused on clinical usability.

(JMIR Med Inform 2020;8(8):e15932) doi: 10.2196/15932
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Introduction

Clinical decision support systems (CDSSs) analyze data to assist
health care providers in making decisions and improving service
quality. Recently, artificial intelligence has been widely used
in CDSSs, and its importance is increasing [1]. Previous studies
have shown that CDSSs that use machine learning are actively
applied worldwide and can be very helpful in clinical decision
making. CDSSs enable clinicians to consider future possibilities
and to develop and implement action plans for patient care.
Recently, machine learning techniques have been widely used
in various medical fields, including diagnosis or prognosis
prediction, pattern recognition, and image classification [2,3].

It is difficult for emergency department (ED) staff to monitor
all patients due to limited resources. Thus, precise triage systems
that can identify high-risk patients are being considered. For
this reason, information technology monitoring systems are
important, and the application of machine learning techniques
in such systems has been extensively studied [4,5]. These triage
systems attempt to predict mortality or cardiac arrest based on
patient characteristics. However, few studies of prediction
modelling clearly reflect sequential characteristics due to the
monitoring process. Moreover, the effectiveness of these systems
and their applicability to real-world data have not been
adequately investigated. For example, detailed analyses of data
processing, imbalance adjustment, and dynamics of various
factors are lacking. Accordingly, the clinical impact and usage
of prediction models have not been sufficiently investigated.
The aims of this study were to develop a prediction model of
cardiac arrest in the ED using machine learning and sequential
characteristics and to validate its clinical usefulness.

Methods

Study Setting
This retrospective study was conducted at Samsung Medical
Center, a tertiary academic hospital in South Korea with

approximately 2000 beds and an average of 200 ED patients
per day. Data were obtained from the electronic medical record
hospital database from January 1, 2013 to December 31, 2017.
Moreover, data from the National Emergency Department
Information System (NEDIS) were collected. NEDIS is a
real-time management system for information on patients
visiting emergency medical institutions. The NEDIS data contain
patient demographics and clinical information, such as age, sex,
and clinical outcomes. We followed the guidelines for
transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis [6]. The study was approved
by the institutional review board of Samsung Medical Center
(IRB No. 2018-10-025).

Study Participants
The study population consisted of all ED patients in the study
period. The following patients were excluded: those who were
dead on arrival, pediatric patients aged <18 years, patients with
injury, patients who suffered cardiac arrest or died within 30
min after visiting the ED, and patients who did not experience
the outcome event within 30 days of admission. The remaining
patients were chronologically divided into the model
development cohort (years 2013 to 2016) and the model
validation cohort (year 2017). The validation cohort was used
to assess the model performance for temporal generalizability.
Most patients only visited the ED once (147,303/208,415,
70.68%); fewer patients visited the ED multiple times, with an
average of 3.24 visits per patient. Because emergency visits are
mostly not scheduled and the reasons for the visits vary [7],
each visit is often treated as an independent subject. Thus, we
considered each visit as an independent study subject rather
than each patient. Patient information was anonymized and
deidentified. A flowchart of the study cohort is presented in
Figure 1.
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Figure 1. Flow diagram for the selection of the study cohort. Data were processed as unique records based on the date on which a patient visited the
emergency department and may correspond to the same patient.

Study Outcome and Predictors
The primary outcome was cardiac arrest regardless of whether
cardiopulmonary resuscitation was performed. We also included
patients who suffered cardiac arrest after admission to the
inpatient ward from the ED. If cardiac arrest occurred several
times, we used the first cardiac arrest.

Two groups of predictors were used for the model: initially
assessed predictors (sex, age, and chief concerns) and serially
assessed predictors (systolic blood pressure, diastolic blood
pressure, heart rate, body temperature, respiratory rate, and
peripheral oxygen saturation [SpO2]). The derived predictor for
time (time interval) was the length of the interval (in minutes)
between time points [8]. We set the value range for each vital
sign as follows: 1 to 300 millimeters of mercury for systolic
blood pressure and diastolic blood pressure, 1 to 200 beats per
minute for heart rate, 30 to 44 degrees Celsius for body

temperature, 1 to 60 breaths per minute for respiratory rate, and
1% to 100% for SpO2. The chief concerns were extracted from
the NEDIS data and were combined with the raw data. The main
symptoms were classified into 39 codes as part of the initial
nursing assessment.

The input vector was set to have 10 sequential measurement
values for each time point. For example, if a patient’s vital signs
were measured 11 times, 11 sets were generated. If the length
of the sequential measurements was less than 10, the insufficient
data were treated as missing. The 1st and 10th sequence values
represent the last and most recent observations, respectively,
from the outcome occurrence. We defined the risk period as the
interval from 0.5 to 24 hours before outcome occurrence [9]. If
the 10th entry of each input vector belonged to the risk period,
it was labelled as an event; otherwise, it was labeled as a
non-event. These processes are shown in Figure 2.

JMIR Med Inform 2020 | vol. 8 | iss. 8 | e15932 | p. 3http://medinform.jmir.org/2020/8/e15932/
(page number not for citation purposes)

Hong et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Sequential dataset generation for a single vital sign of one patient. The risk period was defined as a 24-hour interval prior to the event. The
10 consecutive vital signs were grouped as a data set for prediction. Each point represents a single vital sign measurement. This process was applied to
other vital signs in the same manner.

Data Preprocessing
Missing data in the sequential measurement values were imputed
with the most recent value. If no previous value was available,
zero was used [10]. The serially assessed predictors were
standardized to have the same range or variability, and the
initially assessed predictors were categorized. Our data are
affected by the outcome class imbalance problem, which can
reduce model performance. To address the imbalance problem,
we used undersampling with propensity score matching. Because
excessive adjustment may reduce representativeness, we
considered various matching ratios, namely 1%, 5%, and 10%,
between the event and the non-event groups [11] to determine
a suitable ratio. Sex and age were used as matching variables
in the propensity score matching based on the R package
MatchIt (Multimedia Appendix 1). Data processing was
performed using R version 3.4.3 (R Project). Then, statistical
analysis was conducted using the Keras and scikit-learn libraries
in Python version 3.6.6.

Analysis
Continuous data are expressed as mean values with the
corresponding standard deviations. We performed t tests to
determine the mean differences between groups. The
standardized mean difference is a measure of the effect size for
the comparison of two groups [12]. Categorical data were
expressed as frequency and percentage. The chi-square test was
performed to determine the relationships among categorical
features. All tests were two-sided with a statistical significance
level of P<.05.

To develop a cardiac arrest prediction model, we considered
three popular machine learning algorithms, namely logistic
regression (LR), random forest (RF), and a recurrent neural
network (RNN) [3]. In LR, a ridge penalty was applied to
increase the predictive performance and reduce the risk of
overfitting [13]. In RF, an entropy criterion was used to measure
the split quality [14]. An RNN is an artificial neural network
with the advantage of processing sequential data; it is useful
for time series analysis using a long short-term memory structure

[15]. We used three-layer long short-term memory (the last
layer with a sigmoid activation function), an Adam optimization
algorithm, and a binary cross-entropy loss function. As a
reference cardiac arrest prediction model, we employed the
modified early warning score (MEWS) because it is a widely
used monitoring tool in ED admission [16]. For optimization,
all algorithms used the grid search method. Additionally, the
RNN algorithm used the adaptive moment estimation, stochastic
gradient descent, and root mean square propagation methods.
The hyperparameters in each algorithm were tuned based on
10-fold cross-validation during the model development [17].
To avoid partition bias, the entire cross-validation process was
repeated with 5 different partitions. Furthermore, a sensitivity
analysis was conducted to assess the effects of the balancing
ratio and the influence of the features on the variation of the
results among models. More technical details of each algorithm
are provided in Multimedia Appendix 2.

To assess the performance of the model, we used various
measures, including the area under the receiver operating
characteristic curve (AUROC) and the area under the precision
recall curve (AUPRC). Also, we used the F1 score to assess
class imbalance [18]. Balanced accuracy (BA) was used to
determine the optimal cutoff values for the class prediction [19].
Moreover, we used the positive and negative likelihood ratios
to assess the clinical usefulness of the prediction model as a
diagnostic tool [20]. Calibration and decision curve analyses
were conducted to assess the agreement between the observed
and predicted values [21,22] and explore the practical threshold
for clinical application [23], respectively.

Results

Patient Demographics
A total of 322,990 patients visited the ED during the study
period. After the exclusion criteria were applied, the final
number of patients was 214,307; among these, 993 (0.5%) had
the primary outcome of cardiac arrest. We assigned
168,488/214,307 (78.6%) patients to the model development
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cohort and 45,819/214,307 (21.4%) patients to the model
validation cohort. The patient demographics (divided into two
groups for each cohort) are shown in Table 1. The number of
female patients (114,280/214,307, 52.5%) was greater than the

number of male patients. The mean age for the event group was
65.8 years (SD 15.3), whereas the mean age for the non-event
group was 55.4 years (SD 17.8).

Table 1. Patient characteristics of the development and validation cohorts (N=214,307).

SMDaValidation cohortDevelopment cohortCharacteristic

P valueNon-event

(n=45,617)

Event

(n=202)

P valueNon-event

(n=167,697)

Event

(n=791)

Demographic data

0.022<.001< 001Sex, n (%)

22,591 (49.5)133 (65.8)78,631 (46.9)472 (59.7)Male

23,026 (50.5)69 (34.2)89,066 (53.1)319 (40.3)Female

0.119<.00157.1 (17.6)68.3 (13.6)<.00154.9 (17.8)65.2 (15.6)Age (years), mean (SD)

Vital signs, mean (SD)

Blood pressure (millimeters of mercury)

0.033<.001121.4 (24.8)112.9 (28.4)<.001120.7 (24.1)112.6 (25.5)Systolic

0.002<.00172.7 (15.0)64.3 (16.4)<.00172.7 (15.0)65.0 (15.9)Diastolic

0.053<.00137.1 (2.1)36.8 (2.1)<.00137.0 (1.7)36.7 (2.4)Body temperature (degrees Cel-
sius)

0.033<.00188.3 (20.7)99.0 (22.1)<.00188.8 (20.8)99.9 (23.7)Heart rate (beats per minute)

0.174<.00119.1 (3.7)20.6 (6.4)<.00119.8 (3.9)21.2 (6.6)Respiratory rate (breaths per
minute)

0.331<.00196.8 (8.1)95.2 (8.7)<.00190.2 (25.4)94.9 (11.0)SpO2
b (%)

aSMD (standardized mean difference) for comparison between the development and validation cohorts.
bSpO2: peripheral oxygen saturation.

Figure 3 shows the average trends of the vital signs for the two
groups. Compared to the non-event group, the heart and
respiratory rates for the event group were higher on average,
whereas the values of the other vital signs were lower. The
starting points and the trends were clearly different,
demonstrating that the two groups could be distinguished. The
chief concern distributions of the groups were different, and
dyspnea and abdominal pain were the most common chief
concerns in the event and non-event groups, respectively. A

comparison of the top 10 chief concerns for each group is shown
in Table 2.

Figure 4 shows the frequency difference between the two groups
over time and demonstrates that frequent measurements are
performed for ED patients in serious condition. Figure 5 shows
the model performance over time. It can be seen that the model
performance was maintained, with the AUROC remaining at
least 80% across the monitored time points during the 24 hours
before event occurrence.
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Figure 3. Trends in the event and non-event groups for the vital signs: A. systolic blood pressure; B. diastolic blood pressure; C. heart rate; D. respiratory
rate; E. body temperature; F. peripheral oxygen saturation. The x-axis values are the 10 time points before event occurrence, and the y-axis values are
the mean values of the vital signs. BT: body temperature; DBP: diastolic blood pressure; HR: heart rate; RR: respiratory rate; SBP: systolic blood
pressure; SpO2: peripheral oxygen saturation.

Table 2. Top 10 chief concerns in the event and non-event groups.

Non-event group (n=213,314)Event group (n=993)Rank

n (%)Chief concernn (%)Chief concern

32 996 (15.47)Abdominal pain350 (35.25)Dyspnea1

23 551 (11.04)Fever96 (9.67)Altered mentality2

16 887 (7.92)Dyspnea88 (8.86)Fever3

13,718 (6.43)Dizziness64 (6.45)Abdominal pain4

9361 (4.39)Headache60 (6.04)Chest pain5

6011 (2.82)Chest pain23 (2.32)General weakness6

5042 (2.36)Skin rash, urticaria22 (2.22)Dizziness7

3045 (1.43)Altered mentality20 (2.01)Chest discomfort8

2937 (1.38)Back pain14 (1.41)Hematemesis9

2909 (1.36)Vomiting13 (1.31)Hemoptysis10
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Figure 4. Average numbers of vital sign assessments at each prediction time point for the event and non-event groups. The lines and shaded 95% CIs
show the trends for the vital assessments.

Figure 5. Time point performance in class prediction. The best model was selected based on Table 3, and the predictive performance was evaluated
at each prediction time point from event occurrence. The lines and shaded 95% CIs show the trends for the predictive performance. AUC: area under
the curve.

Model Performance
Table 3 and Multimedia Appendix 3 summarize the calibrations
and overall prediction performance of each model when
applying the different balancing ratios for imbalance adjustment,
while Table 4 presents the class prediction performance. Model
calibrations were described with the integrated calibration index
(ICI) and calibration slope. Compared to the other models, the
RF model had the smallest ICI in the validation cohort for each
balancing ratio (eg, 0.04 for MEWS, 0.04 for LR, 0.02 for RNN,

and 0.01 for RF with 10% balancing). The RF-based models
showed better calibration in the validation cohort than in the
development cohort across the various imbalance adjustments.
All the other models showed poorer calibration in the validation
cohort than in the development cohort; this suggests that
overfitting occurred. As the class imbalance was adjusted with
higher balancing ratios, overall improvement was observed for
the calibration performance (see the bias-corrected curves in
Figure A2 of Multimedia Appendix 3).
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Table 3. Overall predictive performance for each machine learning algorithm with imbalance adjustment in the development and validation cohorts.

Validation cohortDevelopment cohortMatching ratio
and model

Calibration slope

(95% CI)

ICIAUPRC

(95% CI)

AUROC

(95% CI)

Calibration slope

(95% CI)
ICIcAUPRCb

(95% CI)

AUROCa

(95% CI)

0.5% (Real world)

4.19 (4.09-4.29)0.0160.11 (0.10-0.12)0.80 (0.80-0.81)3.69 (3.64-3.74)0.0130.09 (0.08-0.09)0.77 (0.77-0.77)MEWSd

1.12 (1.09-1.15)0.0040.09 (0.09-0.10)0.82 (0.81-0.83)1.09 (1.08-1.10)0.0030.08 (0.08-0.09)0.82 (0.82-0.83)LRe

0.70 (0.69-0.72)0.0060.17 (0.16-0.18)0.91 (0.90-0.91)1.13 (1.12-1.15)0.0020.47 (0.46-0.48)0.96 (0.96-0.97)RNNf

1.09 (1.06-1.13)0.0030.37 (0.35-0.39)0.94 (0.94-0.95)6.71 (6.18-7.24)0.0071.00 (1.00-1.00)1.00 (1.00-1.00)RFg

1%

4.09 (3.97-4.20)0.0250.16 (0.15-0.17)0.79 (0.79-0.80)3.46 (3.41-3.51)0.0220.12 (0.12-0.12)0.76 (0.76-0.77)MEWS

1.09 (1.06-1.12)0.0070.28 (0.27-0.30)0.88 (0.87-0.88)1.07 (1.06-1.09)0.0080.26 (0.25-0.26)0.88 (0.88-0.89)LR

0.79 (0.78-0.81)0.0100.33 (0.32-0.35)0.91 (0.91-0.92)1.03 (1.01-1.04)0.0030.52 (0.51-0.53)0.96 (0.96-0.96)RNN

1.14 (1.11-1.18)0.0030.47 (0.45-0.49)0.94 (0.93-0.94)7.51 (6.86-8.15)0.0101.00 (1.00-1.00)1.00 (1.00-1.00)RF

5%

4.22 (4.08-4.37)0.0660.35 (0.34-0.37)0.77 (0.77-0.78)3.08 (3.01-3.14)0.0520.25 (0.25-0.26)0.73 (0.72-0.73)MEWS

1.02 (0.99-1.04)0.0280.61 (0.60-0.63)0.90 (0.89-0.90)1.00 (0.99-1.02)0.0340.59 (0.58-0.60)0.91 (0.90-0.91)LR

0.82 (0.80-0.84)0.0150.68 (0.66-0.69)0.94 (0.93-0.94)1.04 (1.02-1.06)0.0030.79 (0.79-0.80)0.97 (0.97-0.97)RNN

1.21 (1.17-1.25)0.0120.78 (0.76-0.79)0.96 (0.96-0.96)9.88 (8.54-11.22)0.0251.00 (1.00-1.00)1.00 (1.00-1.00)RF

10%

1.68 (1.62-1.75)0.0430.42 (0.41-0.44)0.76 (0.75-0.77)1.14 (1.11-1.17)0.0180.29 (0.29-0.30)0.70 (0.70-0.71)MEWS

0.98 (0.95-1.01)0.0390.72 (0.71-0.74)0.92 (0.91-0.92)1.00 (0.99-1.01)0.0430.71 (0.70-0.71)0.93 (0.92-0.93)LR

0.81 (0.79-0.84)0.0150.82 (0.81-0.83)0.95 (0.95-0.96)1.02 (1.00-1.04)0.0020.87 (0.87-0.88)0.98 (0.97-0.98)RNN

1.14 (1.09-1.18)0.0140.86 (0.84-0.87)0.97 (0.97-0.97)10.19 (8.73-11.65)0.0251.00 (1.00-1.00)1.00 (1.00-1.00)RF

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision recall curve.
cICI: integrated calibration index.
dMEWS: modified early warning score.
eLR: logistic regression.
fRNN: recurrent neural network.
gRF: random forest.
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Table 4. Class prediction performance of each machine learning algorithm with imbalance adjustment in the validation cohort.

NLRc (95% CI)PLRb (95% CI)F1 scoreSpecificity (95% CI)Sensitivity (95% CI)BAa (95% CI)Matching ratio and model

0.5% (Real world)

0.36 (0.34-0.38)3.31 (3.24-3.38)0.0960.78 (0.78-0.79)0.72 (0.70-0.73)0.75 (0.74-0.76)MEWSd

0.31 (0.29-0.33)3.21 (3.15-3.27)0.0930.76 (0.76-0.76)0.75 (0.75-0.78)0.76 (0.76-0.77)LRe

0.18 (0.17-0.19)5.17 (5.09-5.26)0.1430.84 (0.83-0.84)0.85 (0.84-0.86)0.84 (0.84-0.85)RNNf

0.13 (0.12-0.14)7.72 (7.61-7.85)0.1980.89 (0.88-0.89)0.88 (0.87-0.89)0.88 (0.88-0.89)RFg

1%

0.37 (0.36-0.39)2.97 (2.90-3.03)0.1480.76 (0.76-0.76)0.72 (0.70-0.73)0.74 (0.73-0.74)MEWS

0.27 (0.25-0.28)4.77 (4.67-4.88)0.2180.84 (0.84-0.84)0.78 (0.76-0.79)0.81 (0.80-0.81)LR

0.17 (0.15-0.18)4.67 (4.59-4.76)0.2180.81 (0.81-0.82)0.87 (0.85-0.88)0.84 (0.83-0.85)RNN

0.12 (0.11-0.13)6.49 (6.38-6.60)0.2780.86 (0.86-0.86)0.90 (0.89-0.91)0.88 (0.87-0.88)RF

5%

0.39 (0.37-0.41)2.57 (2.50-2.63)0.3480.72 (0.72-0.73)0.72 (0.70-0.73)0.72 (0.71-0.73)MEWS

0.20 (0.18-0.21)6.15 (5.97-6.34)0.5550.87 (0.86-0.87)0.83 (0.82-0.84)0.85 (0.84-0.85)LR

0.12 (0.11-0.14)5.96 (5.80-6.15)0.5620.85 (0.85-0.85)0.89 (0.88-0.90)0.87 (0.87-0.88)RNN

0.09 (0.08-0.10)8.23 (7.97-8.49)0.6390.89 (0.88-0.89)0.92 (0.91-0.93)0.90 (0.90-0.91)RF

10%

0.41 (0.39-0.43)2.29 (2.23-2.35)0.4190.69 (0.68-0.69)0.72 (0.70-0.73)0.70 (0.69-0.71)MEWS

0.16 (0.15-0.17)6.80 (6.54-7.07)0.6750.87 (0.87-0.88)0.86 (0.85-0.87)0.87 (0.86-0.87)LR

0.08 (0.07-0.09)6.32 (6.11-6.54)0.6810.85 (0.85-0.86)0.93 (0.92-0.94)0.89 (0.89-0.90)RNN

0.06 (0.06-0.07)9.31 (8.95-9.69)0.7560.90 (0.89-0.90)0.94 (0.94-0.95)0.92 (0.92-0.92)RF

aBA: balanced accuracy.
bPLR: positive likelihood ratio.
cNLR: negative likelihood ratio.
dMEWS: modified early warning score.
eLR: logistic regression.
fRNN: recurrent neural network.
gRF: random forest.

The RF models showed the best overall predictive performance
in the validation cohort for each balancing ratio. For instance,
the AUROC of RF was 0.97 and an AUPRC of 0.86, while
RNN, LR, and MEWS had AUROCs of 0.95, 0.92, and 0.76
and AUPRCs of 0.82, 0.72, and 0.42, respectively, in the
validation cohort with 10% balancing. The RF-based models
outperformed the RNN- and LR-based models as well as MEWS
in terms of all performance measures in class prediction (all
P<.001). The RF-based models showed better overall prediction
performance, and all performance measures for the class
prediction improved as higher balancing ratios were applied for
the class imbalance adjustment (eg, the AUPRC and F1 score
improved from 0.37 to 0.86 and from 0.20 to 0.76, respectively).

After considering all the factors, the RF-based model with a
10% balancing ratio was selected as the best model. The best
model had a sensitivity and specificity of 0.94 (95% CI
0.94-0.95) and 0.90 (95% CI 0.89-0.90), respectively. Moreover,
the positive likelihood ratio value of 9.31 (95% CI 8.95-9.69)
and the negative likelihood ratio value of 0.06 (95% CI
0.06-0.07) indicate that the model is clinically informative and
very useful in practice. For the best model, the ICI and
calibration slope were 0.01 and 1.14 (95% CI 1.09-1.18),
respectively. Table 5 summarizes the importance of each
predictor in the best model. Body temperature and SpO2 were
relatively important predictors.
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Table 5. Predictor importance in the random forest model with 10% balancing.

Predictor importance, mean (SD)Feature

0. 284 (0.014)Body temperature

0.232 (0.011)Peripheral oxygen saturation

0.127 (0.005)Heart rate

0.096 (0.009)Duration

0.084 (0.005)Respiratory rate

0.081 (0.006)Systolic blood pressure

0.072 (0.005)Diastolic blood pressure

0.012 (N/A)aChief concern

0.010 (N/A)Age

0.002 (N/A)Sex

aN/A: not applicable.

Discussion

Principal Findings
Recent prediction model guidelines emphasize validation and
clinical application [6,24]. Clinical usage of prediction models
is important; therefore, these models should be clinically
adaptable and persuasive. However, previous studies are lacking
in these aspects. In the present study, we attempted to remedy
this by verifying the suitability of the model using chronological
visualization focused on clinical usability.

In this study, we developed the model using the method of
generating sequential data vectors. The comprehensive model
validation considered performance and various clinical relevance
aspects. The clinical validity of the model was assessed through
visualization of chronological characteristics.

Machine learning–based prediction models are often called
“black boxes” because the algorithms provide answers without
any “human” knowledge. When calculations and suggestions
cannot be clinically explained, it is almost impossible to apply
them in real-world settings. One reason for this is that it is not
clear who or what is responsible for clinical decisions [25,26].
Another reason is that clinicians are not notified of the
parameters on which they should focus; thus, applying machine
learning–based prediction in a clinical setting may be confusing.

It can be practically important to suggest a single unified
threshold for class prediction across all prediction time points.
The best threshold chosen with the highest balanced accuracy
at each prediction time point ranged from 0.30 to 0.40. Within
this range, we considered several candidates for the unified
threshold and investigated their performance in various aspects
(Multimedia Appendix 4-6). A unified threshold of 0.35 was
selected because of its stable performance and considerable net
benefit. Clinicians can apply either a single unified threshold
across all time points or the best threshold for each time point
based on practicality and depending on their environment.

In practice, clinicians can apply the proposed prediction process
as follows. When a new patient visits the ED, the initial
assessment is conducted and the initially assessed predictors

are recorded. Then, the patient’s vital signs are monitored and
the sequential measurements are converted into a sequential
record for serially assessed predictors. Then, the developed
prediction model produces the predicted probability of cardiac
arrest. When a vital sign is updated, the sequential record is
promptly updated and used as a new input to update the
predicted probability. Based on a prechosen threshold (eg, 0.35),
the risk of the patient at the moment is classified as high if the
prediction probability is greater than or equal to the threshold.
This prediction process can be applied as a trigger alarm system,
in which the high-risk prediction initiates more intensive care
or closer monitoring. In this case, the missed rate and the false
alarm rate are expected to be 6% and 10%, respectively.
Therefore, the increase in the workload of the medical team is
only 10%.

Significant efforts have been made to improve the explainability
of prediction models so they can be applied in real-world
settings [27-30]. Due to the nature of machine learning, it is
difficult to explain individual decisions specifically; however,
it is still possible to describe the overall decision process based
on feature importance [31,32]. On average, body temperature
and SpO2 were important, especially in the 1st, 2nd, 3rd, and
10th measurements. The remaining features were relatively
important only in the 10th measurement. Our findings
demonstrate that there is a difference in the importance of these
features over time. Thus, it is necessary to test the performance
by narrowing the time interval.

Another factor that affects the clinical validity of prediction
models is imbalance of the outcome parameters [33,34]. It is
clinically valuable to know how performance changes in
different settings, and this change was given little attention in
previous studies. In this study, we used various structures and
considered both model accuracy and realistic settings to
demonstrate the statistical robustness of the model.

In the real world, serially assessed vital data often contain
missing values for various reasons, and these data should be
handled properly and efficiently. When choosing
missing-handling methods, we focused on two factors: the
nonrandomness of missing patterns in the ED data and the
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applicability to the risk prediction of a new patient in a real ED
situation. In the process of sequential data set generation,
nonrandom missing data naturally occurs due to the lack of
information on vital signs at early prediction time points (ie,
before assessing vital signs 10 times). We attempted to use this
nonrandom missing pattern as additional information by zero
imputation, which may reflect the low frequency of vital
assessment to a certain degree. Moreover, at other prediction
time points, missing values occur nonrandomly because vital
assessments in the ED are ordered according to the patient’s
condition and are also monitored periodically. We suggested
filling in the missing data with the most recent value because
it is practically applicable to the prediction of risk for new
patients based on our prediction procedure.

Limitations
Our study has several limitations. First, the use of machine
learning algorithms was limited, and the study design (eg, risk
period and number of sequential measurements) was set
heuristically based on clinical experience in real clinical settings.

However, a prediction model can be developed by applying the
process in this study using other algorithms as well. Second,
because this study was conducted in a single department of a
single center, it is not representative. To use the model in other
institutions, further external validation should be performed.
Third, few features were used, and the results of other tests
containing significant information (eg, laboratory tests) were
not considered. Using this additional information may be
advantageous, although the proposed model is already
considerably accurate. Finally, the outcome was an ultimate
result (ie, cardiac arrest) and did not include resuscitation efforts
or prescription. In a clinical setting, resuscitation efforts should
be considered. Therefore, it is necessary to extend the proposed
method to include resuscitation and acute deterioration.

Conclusions
In this study, we developed a cardiac arrest prediction model
in the ED using machine learning and sequential characteristics.
The model was validated for clinical usefulness using
chronological visualization focused on clinical usability.
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