Published on in Vol 8, No 5 (2020): May

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/15767, first published .
The Development of a Practical Artificial Intelligence Tool for Diagnosing and Evaluating Autism Spectrum Disorder: Multicenter Study

The Development of a Practical Artificial Intelligence Tool for Diagnosing and Evaluating Autism Spectrum Disorder: Multicenter Study

The Development of a Practical Artificial Intelligence Tool for Diagnosing and Evaluating Autism Spectrum Disorder: Multicenter Study

Journals

  1. Davendralingam N, Sebire N, Arthurs O, Shelmerdine S. Artificial intelligence in paediatric radiology: Future opportunities. The British Journal of Radiology 2021;94(1117) View
  2. Eslami T, Almuqhim F, Raiker J, Saeed F. Machine Learning Methods for Diagnosing Autism Spectrum Disorder and Attention- Deficit/Hyperactivity Disorder Using Functional and Structural MRI: A Survey. Frontiers in Neuroinformatics 2021;14 View
  3. Graña M, Silva M. Impact of Machine Learning Pipeline Choices in Autism Prediction From Functional Connectivity Data. International Journal of Neural Systems 2021;31(04):2150009 View
  4. Wang H, Avillach P. Diagnostic Classification and Prognostic Prediction Using Common Genetic Variants in Autism Spectrum Disorder: Genotype-Based Deep Learning. JMIR Medical Informatics 2021;9(4):e24754 View
  5. Chen T, Xiao F, Yu Z, Yuan M, Xu H, Lu L. Detection and Grading of Gliomas Using a Novel Two-Phase Machine Learning Method Based on MRI Images. Frontiers in Neuroscience 2021;15 View
  6. Celentano S, Gibertoni D. ABORDAGENS DA INTELIGÊNCIA ARTIFICIAL NO CONTEXTO DO TRANSTORNO DO ESPECTRO AUTISTA. Revista Interface Tecnológica 2022;19(2):151 View
  7. Kadlubowska M, Schrauwen I. Methods to Improve Molecular Diagnosis in Genomic Cold Cases in Pediatric Neurology. Genes 2022;13(2):333 View
  8. ElNakieb Y, Ali M, Elnakib A, Shalaby A, Mahmoud A, Soliman A, Barnes G, El-Baz A. Understanding the Role of Connectivity Dynamics of Resting-State Functional MRI in the Diagnosis of Autism Spectrum Disorder: A Comprehensive Study. Bioengineering 2023;10(1):56 View
  9. Tayanloo-Beik A, Hamidpour S, Abedi M, Shojaei H, Tavirani M, Namazi N, Larijani B, Arjmand B. Zebrafish Modeling of Autism Spectrum Disorders, Current Status and Future Prospective. Frontiers in Psychiatry 2022;13 View
  10. Bahathiq R, Banjar H, Bamaga A, Jarraya S. Machine learning for autism spectrum disorder diagnosis using structural magnetic resonance imaging: Promising but challenging. Frontiers in Neuroinformatics 2022;16 View
  11. Sabzevari F, Amelirad O, Moradi Z, Habibi M. Artificial intelligence evaluation of COVID-19 restrictions and speech therapy effects on the autistic children’s behavior. Scientific Reports 2023;13(1) View
  12. Song D, Topriceanu C, Ilie-Ablachim D, Kinali M, Bisdas S. Machine learning with neuroimaging data to identify autism spectrum disorder: a systematic review and meta-analysis. Neuroradiology 2021;63(12):2057 View
  13. ElNakieb Y, Ali M, Elnakib A, Shalaby A, Soliman A, Mahmoud A, Ghazal M, Barnes G, El-Baz A. The Role of Diffusion Tensor MR Imaging (DTI) of the Brain in Diagnosing Autism Spectrum Disorder: Promising Results. Sensors 2021;21(24):8171 View
  14. Deng X, Zhang J, Liu R, Liu K. Classifying ASD based on time-series fMRI using spatial–temporal transformer. Computers in Biology and Medicine 2022;151:106320 View
  15. Guo X, Wang J, Wang X, Liu W, Yu H, Xu L, Li H, Wu J, Dong M, Tan W, Chen W, Yang Y, Chen Y. Diagnosing autism spectrum disorder in children using conventional MRI and apparent diffusion coefficient based deep learning algorithms. European Radiology 2022;32(2):761 View
  16. Caruso M, Ricciardi C, Delli Paoli G, Di Dato F, Donisi L, Romeo V, Petretta M, Iorio R, Cesarelli G, Brunetti A, Maurea S. Machine Learning Evaluation of Biliary Atresia Patients to Predict Long-Term Outcome after the Kasai Procedure. Bioengineering 2021;8(11):152 View
  17. Pringle C, Kilday J, Kamaly-Asl I, Stivaros S. The role of artificial intelligence in paediatric neuroradiology. Pediatric Radiology 2022;52(11):2159 View
  18. deLeyer‐Tiarks J, Li M, Levine‐Schmitt M, Andrade B, Bray M, Peters E. Advancing autism technology. Psychology in the Schools 2023;60(2):495 View
  19. Chen T, Hu L, Lu Q, Xiao F, Xu H, Li H, Lu L. A computer-aided diagnosis system for brain tumors based on artificial intelligence algorithms. Frontiers in Neuroscience 2023;17 View
  20. Bertacchini F, Demarco F, Scuro C, Pantano P, Bilotta E. A social robot connected with chatGPT to improve cognitive functioning in ASD subjects. Frontiers in Psychology 2023;14 View
  21. Xiao Q, Xu H, Chu Z, Feng Q, Zhang Y. Margin-Maximized Norm-Mixed Representation Learning for Autism Spectrum Disorder Diagnosis With Multi-Level Flux Features. IEEE Transactions on Biomedical Engineering 2024;71(1):183 View
  22. Gonzalez J, Múnera N, Alvarez-Jimenez C, Velasco N, Romero E. An exploration of structural brain differences in Autism Spectrum Disorders: A multi-parcellation and multi-age analysis. Biomedical Signal Processing and Control 2024;92:106043 View
  23. Manoj G, Gupta V, Bhattacharya A, Aleem S, Vedantham D, A A, Agastinose Ronickom J. Diagnostic classification of autism spectrum disorder using sMRI improves with the morphological distance-related features compared to morphological features. Multimedia Tools and Applications 2024 View
  24. Al-Muhanna M, Alghamdi A, Alrfaei B, Afzal M, Al-Subaiee R, Haddadi R. An Attention-Based Hybrid Optimized Residual Memory Network (AHRML) Method for Autism Spectrum Disorder (ASD) Detection. Journal of Disability Research 2024;3(3) View
  25. Bacon E, He D, Achi N, Wang L, Li H, Yao-Digba P, Monkam P, Qi S. Neuroimage analysis using artificial intelligence approaches: a systematic review. Medical & Biological Engineering & Computing 2024;62(9):2599 View
  26. Schielen S, Pilmeyer J, Aldenkamp A, Zinger S. The diagnosis of ASD with MRI: a systematic review and meta-analysis. Translational Psychiatry 2024;14(1) View
  27. Liu R, Huang Z, Hu Y, Zhu Z, Wong K, Tan K. Spatial–Temporal Co-Attention Learning for Diagnosis of Mental Disorders From Resting-State fMRI Data. IEEE Transactions on Neural Networks and Learning Systems 2024;35(8):10591 View
  28. Mainas F, Golosio B, Retico A, Oliva P. Exploring Autism Spectrum Disorder: A Comparative Study of Traditional Classifiers and Deep Learning Classifiers to Analyze Functional Connectivity Measures from a Multicenter Dataset. Applied Sciences 2024;14(17):7632 View
  29. El-Ashram R, Aldaghmi O, Mohammed S. Requirements for the Application of Artificial Intelligence in Diagnosing Autism Spectrum Disorder: Specialists’ Perception. Journal of Disability Research 2024;3(7) View

Books/Policy Documents

  1. Mengi M, Malhotra D. Recent Innovations in Computing. View
  2. Siddiqui S, Loganathan S, Elangovan V, Ali M. A Handbook of Artificial Intelligence in Drug Delivery. View
  3. Knake L, Rogerson C, Winter M, Kandaswamy S. Artificial Intelligence in Clinical Practice. View
  4. . Artificial Intelligence for Bone Disorder. View