Published on in Vol 7, No 3 (2019): Jul-Sep
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/13476, first published
.
Journals
- Sandri V, Gonçalves I, Machado das Neves G, Romani Paraboni M. Diagnostic significance of C-reactive protein and hematological parameters in acute toxoplasmosis. Journal of Parasitic Diseases 2020;44(4):785 View
- Tarekegn A, Ricceri F, Costa G, Ferracin E, Giacobini M. Predictive Modeling for Frailty Conditions in Elderly People: Machine Learning Approaches. JMIR Medical Informatics 2020;8(6):e16678 View
- Zhao J, Wu J, Wei J, Su X, Chai Y, Li S, Wang Z. Liq_ccRCC: Identification of Clear Cell Renal Cell Carcinoma Based on the Integration of Clinical Liquid Indices. Frontiers in Oncology 2021;10 View
- Liu H, Tang K, Peng E, Wang L, Xia D, Chen Z. Predicting Prostate Cancer Upgrading of Biopsy Gleason Grade Group at Radical Prostatectomy Using Machine Learning-Assisted Decision-Support Models. Cancer Management and Research 2020;Volume 12:13099 View
- Zhang P, Wu J, Zhai H, Li S. ABCModeller: an automatic data mining tool based on a consistent voting method with a user-friendly graphical interface. Briefings in Bioinformatics 2021;22(4) View
- Bhattacharjee A, Dey J, Kumari P. A combined iterative sure independence screening and Cox proportional hazard model for extracting and analyzing prognostic biomarkers of adenocarcinoma lung cancer. Healthcare Analytics 2022;2:100108 View
- Rehman N, Zia M, Meraj T, Rauf H, Damaševičius R, El-Sherbeeny A, El-Meligy M. A Self-Activated CNN Approach for Multi-Class Chest-Related COVID-19 Detection. Applied Sciences 2021;11(19):9023 View
- Wen X, Leng P, Wang J, Yang G, Zu R, Jia X, Zhang K, Mengesha B, Huang J, Wang D, Luo H. Clinlabomics: leveraging clinical laboratory data by data mining strategies. BMC Bioinformatics 2022;23(1) View
- Li S, Li M, Wu J, Li Y, Han J, Cao W, Zhou X. Development and validation of a routine blood parameters-based model for screening the occurrence of retinal detachment in high myopia in the context of PPPM. EPMA Journal 2023;14(2):219 View
- Huang X, Xie B, Long J, Chen H, Zhang H, Fan L, Chen S, Chen K, Wei Y. Prediction of risk factors for scrub typhus from 2006 to 2019 based on random forest model in Guangzhou, China. Tropical Medicine & International Health 2023;28(7):551 View
- Zhai Y, Lin X, Wei Q, Pu Y, Pang Y. Interpretable prediction of cardiopulmonary complications after non-small cell lung cancer surgery based on machine learning and SHapley additive exPlanations. Heliyon 2023;9(7):e17772 View
- Choudhary A, Yu J, Kouznetsova V, Kesari S, Tsigelny I. Two-Stage Deep-Learning Classifier for Diagnostics of Lung Cancer Using Metabolites. Metabolites 2023;13(10):1055 View
- Bentick K, Runevic J, Akula S, Kyriacou T, Cool P, Andras P. Machine learning models based on routinely sampled blood tests can predict the presence of malignancy amongst patients with suspected musculoskeletal malignancy. Methods 2023;220:55 View
- Tared S, Khaouane L, Hanini S, Khaouane A, Roubehie Fissa M. Enhancing lung cancer prediction through crow search, artificial bee colony algorithms, and support vector machine. International Journal of Information Technology 2024;16(5):2863 View
- Li S, Li M, Wu J, Li Y, Han J, Song Y, Cao W, Zhou X. Developing and validating a clinlabomics-based machine-learning model for early detection of retinal detachment in patients with high myopia. Journal of Translational Medicine 2024;22(1) View
Books/Policy Documents
- Bai F, Aruna S, Ashok Kumar S, Maheswari M, Katyal K, Vipat D, Parasar S. Decision-Making Models. View