Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Monday, March 11, 2019 at 4:00 PM to 4:30 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Published on 17.01.14 in Vol 2, No 1 (2014): Jan-Jun

This paper is in the following e-collection/theme issue:

Works citing "Big Data and Clinicians: A Review on the State of the Science"

According to Crossref, the following articles are citing this article (DOI 10.2196/medinform.2913):

(note that this is only a small subset of citations)

  1. Nazir S, Nawaz M, Adnan A, Shahzad S, Asadi S. Big Data Features, Applications, and Analytics in Cardiology—A Systematic Literature Review. IEEE Access 2019;7:143742
    CrossRef
  2. Modi N, Ashby D, Battersby C, Brocklehurst P, Chivers Z, Costeloe K, Draper ES, Foster V, Kemp J, Majeed A, Murray J, Petrou S, Rogers K, Santhakumaran S, Saxena S, Statnikov Y, Wong H, Young A. Developing routinely recorded clinical data from electronic patient records as a national resource to improve neonatal health care: the Medicines for Neonates research programme. Programme Grants for Applied Research 2019;7(6):1
    CrossRef
  3. Dallmann A, Mian P, den Anker JV, Allegaert K. Clinical Pharmacokinetic Studies in Pregnant Women and the Relevance of Pharmacometric Tools. Current Pharmaceutical Design 2019;25(5):483
    CrossRef
  4. Rabey M, Smith A, Kent P, Beales D, Slater H, O’Sullivan P. Chronic low back pain is highly individualised: patterns of classification across three unidimensional subgrouping analyses. Scandinavian Journal of Pain 2019;19(4):743
    CrossRef
  5. Treder M, Gaber A, Rudloff B, Eter N. Real-Life-Daten-Analyse der Therapiequalität bei Patienten mit exsudativer altersabhängiger Makuladegeneration (AMD) und venösen Gefäßverschlüssen an einer deutschen Universitätsaugenklinik. Der Ophthalmologe 2019;116(6):553
    CrossRef
  6. Rana AI, Mugavero MJ. How Big Data Science Can Improve Linkage and Retention in Care. Infectious Disease Clinics of North America 2019;33(3):807
    CrossRef
  7. Raghupathi V, Zhou Y, Raghupathi W. Exploring Big Data Analytic Approaches to Cancer Blog Text Analysis. International Journal of Healthcare Information Systems and Informatics 2019;14(4):1
    CrossRef
  8. Silverio A, Cavallo P, De Rosa R, Galasso G. Big Health Data and Cardiovascular Diseases: A Challenge for Research, an Opportunity for Clinical Care. Frontiers in Medicine 2019;6
    CrossRef
  9. Bink A, Benner J, Reinhardt J, De Vere-Tyndall A, Stieltjes B, Hainc N, Stippich C. Structured Reporting in Neuroradiology: Intracranial Tumors. Frontiers in Neurology 2018;9
    CrossRef
  10. Guha S, Kumar S. Emergence of Big Data Research in Operations Management, Information Systems, and Healthcare: Past Contributions and Future Roadmap. Production and Operations Management 2018;27(9):1724
    CrossRef
  11. Shachar N, Mitelpunkt A, Kozlovski T, Galili T, Frostig T, Brill B, Marcus-Kalish M, Benjamini Y. The Importance of Nonlinear Transformations Use in Medical Data Analysis. JMIR Medical Informatics 2018;6(2):e27
    CrossRef
  12. Davison SN. Personalized Approach and Precision Medicine in Supportive and End-of-Life Care for Patients With Advanced and End-Stage Kidney Disease. Seminars in Nephrology 2018;38(4):336
    CrossRef
  13. Fredriksson C. Big data creating new knowledge as support in decision-making: practical examples of big data use and consequences of using big data as decision support. Journal of Decision Systems 2018;27(1):1
    CrossRef
  14. Schaarup C, Pape-Haugaard LB, Hejlesen OK. Models Used in Clinical Decision Support Systems Supporting Healthcare Professionals Treating Chronic Wounds: Systematic Literature Review. JMIR Diabetes 2018;3(2):e11
    CrossRef
  15. Westra BL, Sylvia M, Weinfurter EF, Pruinelli L, Park JI, Dodd D, Keenan GM, Senk P, Richesson RL, Baukner V, Cruz C, Gao G, Whittenburg L, Delaney CW. Big data science: A literature review of nursing research exemplars. Nursing Outlook 2017;65(5):549
    CrossRef
  16. Schee genannt Halfmann S, Evangelatos N, Schröder-Bäck P, Brand A. European healthcare systems readiness to shift from ‘one-size fits all’ to personalized medicine. Personalized Medicine 2017;14(1):63
    CrossRef
  17. Chen Y, Wang Z, Yuan G, Huang L. An overview of online based platforms for sharing and analyzing electrophysiology data from big data perspective. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2017;7(4):e1206
    CrossRef
  18. Balla A, Batista Rodríguez G, Corradetti S, Balagué C, Fernández-Ananín S, Targarona EM. Outcomes after bariatric surgery according to large databases: a systematic review. Langenbeck's Archives of Surgery 2017;402(6):885
    CrossRef
  19. Osborne TF, Clark RH, Blackowiak J, Williamson PJ, Werb SM, Strong BW. Efficiency Analysis of an Interoperable Healthcare Operations Platform. Journal of Medical Systems 2017;41(4)
    CrossRef
  20. Agoston DV, Langford D. Big Data in traumatic brain injury; promise and challenges. Concussion 2017;2(4):CNC44
    CrossRef
  21. Lee CH, Yoon H. Medical big data: promise and challenges. Kidney Research and Clinical Practice 2017;36(1):3
    CrossRef
  22. Oyinlola JO, Campbell J, Kousoulis AA. Is real world evidence influencing practice? A systematic review of CPRD research in NICE guidances. BMC Health Services Research 2016;16(1)
    CrossRef
  23. Zhu VZ, Tuggle CT, Au AF. Promise and Limitations of Big Data Research in Plastic Surgery. Annals of Plastic Surgery 2016;76(4):453
    CrossRef
  24. Danso SO, Job DE, Gonzalez DR, Dickie DA, Palmer J, Ure J, Bath PM, Sandercock PAG, Wardlaw JM. Developing an Integrated Image Bank and Metadata for Large-scale Research in Cerebrovascular Disease: Our Experience from the Stroke Image Bank Project. Frontiers in ICT 2016;3
    CrossRef
  25. Hackl WO, Ammenwerth E. SPIRIT: Systematic Planning of Intelligent Reuse of Integrated Clinical Routine Data. Methods of Information in Medicine 2016;55(02):114
    CrossRef
  26. Mbagwu M, French DD, Gill M, Mitchell C, Jackson K, Kho A, Bryar PJ. Creation of an Accurate Algorithm to Detect Snellen Best Documented Visual Acuity from Ophthalmology Electronic Health Record Notes. JMIR Medical Informatics 2016;4(2):e14
    CrossRef
  27. Kortüm K, Müller M, Hirneiß C, Babenko A, Nasseh D, Kern C, Kampik A, Priglinger S, Kreutzer TC. „Smart eye data“. Der Ophthalmologe 2016;113(6):469
    CrossRef
  28. Dion M, Diouf NT, Robitaille H, Turcotte S, Adekpedjou R, Labrecque M, Cauchon M, Légaré F. Teaching Shared Decision Making to Family Medicine Residents: A Descriptive Study of a Web-Based Tutorial. JMIR Medical Education 2016;2(2):e17
    CrossRef
  29. Sutherland SM, Chawla LS, Kane-Gill SL, Hsu RK, Kramer AA, Goldstein SL, Kellum JA, Ronco C, Bagshaw SM. Utilizing Electronic Health Records to Predict Acute Kidney Injury Risk and Outcomes: Workgroup Statements from the 15thADQI Consensus Conference. Canadian Journal of Kidney Health and Disease 2016;3:99
    CrossRef
  30. Caldieraro MA. The future of psychiatric research. Trends in Psychiatry and Psychotherapy 2016;38(4):185
    CrossRef
  31. Janke AT, Overbeek DL, Kocher KE, Levy PD. Exploring the Potential of Predictive Analytics and Big Data in Emergency Care. Annals of Emergency Medicine 2016;67(2):227
    CrossRef
  32. Luo J, Wu M, Gopukumar D, Zhao Y. Big Data Application in Biomedical Research and Health Care: A Literature Review. Biomedical Informatics Insights 2016;8:BII.S31559
    CrossRef
  33. Parra Calderón CL. Big data en sanidad en España: la oportunidad de una estrategia nacional. Gaceta Sanitaria 2016;30(1):63
    CrossRef
  34. Mostert M, Bredenoord AL, Biesaart MCIH, van Delden JJM. Big Data in medical research and EU data protection law: challenges to the consent or anonymise approach. European Journal of Human Genetics 2016;24(7):956
    CrossRef
  35. Deserno T, Marx N. Computational Electrocardiography: Revisiting Holter ECG Monitoring. Methods of Information in Medicine 2016;55(04):305
    CrossRef
  36. Woldu SL, Raj GV. The surgeon–scientist — a dying breed?. Nature Reviews Urology 2016;13(12):698
    CrossRef
  37. Monteith S, Glenn T, Geddes J, Bauer M. Big data are coming to psychiatry: a general introduction. International Journal of Bipolar Disorders 2015;3(1)
    CrossRef
  38. Huang C, Syed-Abdul S, Jian W, Iqbal U, Nguyen P, Lee P, Lin S, Hsu W, Wu M, Wang C, Ma K, Li Y. A novel tool for visualizing chronic kidney disease associated polymorbidity: a 13-year cohort study in Taiwan. Journal of the American Medical Informatics Association 2015;22(2):290
    CrossRef
  39. McDermott S, Turk MA. What are the implications of the big data paradigm shift for disability and health?. Disability and Health Journal 2015;8(3):303
    CrossRef
  40. Azadmanjir Z, Safdari R, Ghazisaeidi M. From Self-care for Healthy People to Self-management for Cancer Patients with Cancer Portals. Asian Pacific Journal of Cancer Prevention 2015;16(4):1321
    CrossRef
  41. Ali R, Hussain J, Siddiqi M, Hussain M, Lee S. H2RM: A Hybrid Rough Set Reasoning Model for Prediction and Management of Diabetes Mellitus. Sensors 2015;15(7):15921
    CrossRef
  42. MacRae J, Darlow B, McBain L, Jones O, Stubbe M, Turner N, Dowell A. Accessing primary care Big Data: the development of a software algorithm to explore the rich content of consultation records. BMJ Open 2015;5(8):e008160
    CrossRef
  43. Brennan PF, Bakken S. Nursing Needs Big Data and Big Data Needs Nursing. Journal of Nursing Scholarship 2015;47(5):477
    CrossRef
  44. Friedman SL, Friedman YL. The future of hepatology: Embrace change. Clinical Liver Disease 2015;5(6):127
    CrossRef
  45. Fang Z, Fan X, Chen G. A study on specialist or special disease clinics based on big data. Frontiers of Medicine 2014;8(3):376
    CrossRef
  46. Rodeghero J, Cook C. The use of big data in manual physiotherapy. Manual Therapy 2014;19(6):509
    CrossRef
  47. Iwashyna TJ, Liu V. What’s So Different about Big Data?. A Primer for Clinicians Trained to Think Epidemiologically. Annals of the American Thoracic Society 2014;11(7):1130
    CrossRef

According to Crossref, the following books are citing this article (DOI 10.2196/medinform.2913)

:
  1. Martinez-Mosquera D, Luján-Mora S, Montoya L. LH, Reyes Ch. RP, Paredes Calderón M. Advances in Emerging Trends and Technologies. 2020. Chapter 12:125
    CrossRef
  2. Papadopoulou P, Lytras M, Marouli C. Biotechnology. 2019. chapter 8:185
    CrossRef
  3. Cinaroglu S. Analytics, Operations, and Strategic Decision Making in the Public Sector. 2019. chapter 5:88
    CrossRef
  4. Papadopoulou P, Chui KT, Daniela L, Lytras MD. Cognitive Computing in Technology-Enhanced Learning. 2019. chapter 6:109
    CrossRef
  5. Sharma N, Patil MM, Shamkuwar M. Internet of Things in Biomedical Engineering. 2019. :189
    CrossRef
  6. Agoston DV. Leveraging Biomedical and Healthcare Data. 2019. :53
    CrossRef
  7. Papadopoulou P, Lytras M, Marouli C. Applying Big Data Analytics in Bioinformatics and Medicine. 2018. chapter 1:1
    CrossRef
  8. Ortega MI, Genero M, Piattini M. Model and Data Engineering. 2017. Chapter 8:96
    CrossRef
  9. Hardy LR, Bourne PE. Big Data-Enabled Nursing. 2017. Chapter 10:183
    CrossRef
  10. Nicholls SG, Langan SM, Benchimol EI. The Ethics of Biomedical Big Data. 2016. Chapter 15:339
    CrossRef
  11. Mathew PS, Pillai AS. Innovations in Bio-Inspired Computing and Applications. 2016. Chapter 48:543
    CrossRef
  12. Tempini N, Leonelli S. eLS. 2015. :1
    CrossRef
  13. Gaitanou P, Garoufallou E, Balatsoukas P. Metadata and Semantics Research. 2014. Chapter 14:141
    CrossRef