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Abstract

Background: In the past few decades, medically related data collection saw a huge increase, referred to as big data. These huge
datasets bring challenges in storage, processing, and analysis. In clinical medicine, big data is expected to play an important role
in identifying causality of patient symptoms, in predicting hazards of disease incidence or reoccurrence, and in improving
primary-care quality.

Objective: The objective of this review was to provide an overview of the features of clinical big data, describe a few commonly
employed computational algorithms, statistical methods, and software toolkits for data manipulation and analysis, and discuss
the challenges and limitations in this realm.

Methods: We conducted a literature review to identify studies on big data in medicine, especially clinical medicine. We used
different combinations of keywords to search PubMed, Science Direct, Web of Knowledge, and Google Scholar for literature of
interest from the past 10 years.

Results: This paper reviewed studies that analyzed clinical big data and discussed issues related to storage and analysis of this
type of data.

Conclusions: Big data is becoming a common feature of biological and clinical studies. Researchers who use clinical big data
face multiple challenges, and the data itself has limitations. It is imperative that methodologies for data analysis keep pace with
our ability to collect and store data.

(JMIR Med Inform 2014;2(1):e1) doi: 10.2196/medinform.2913
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Introduction

Big data refers to very large datasets with complex structures
that are difficult to process using traditional methods and tools.
The term process includes, capture, storage, formatting,
extraction, curation, integration, analysis, and visualization
[1-9]. A popular definition of big data is the “3V” model
proposed by Gartner [10], which attributes three fundamental
features to big data: high volume of data mass, high velocity of
data flow, and high variety of data types. The notion of big data
can be traced back to the 1970s [11-13] when scientists realized
that they lacked the tools to analyze datasets of large size. In
those days, big data was merely several to hundreds of

megabytes [14]; now datasets of terabytes are common [15, 16].
Therefore, the “big” in big data reflects the limits of data storage
and computational power existing at a given point in time.

Table 1 shows the growth of global big data volume and
computer science papers on big data since 2009. This table
exemplifies that stored data will be in the tens of zettabytes
range by 2020, and research on how to deal with big data will
grow exponentially as well.

Big data is gathered in many disciplines and is made possible
by ubiquitous information-sensing devices and software [19].
An example is web logs: websites such as Google or Facebook
automatically record user information at each visit. Other
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examples come from the stock market [20], earthquake
surveillance [21], political elections [22], behavioral studies
[23], sports [24], pharmaceutical reports [25], health care [26,
27], electronic medical records [28], imaging data [29], genome
data [30, 31], and entrepreneur transaction records [32]. Data
collection is sometimes interdisciplinary. As an example, a
sudden increase in Google search terms such as “flu symptoms”
and “flu treatments” can be used to predict an increase in flu
patients presenting to hospital emergency rooms [33]. This
example also demonstrates that big data has promising predictive
power and return on investment. Return on investment of big
data has also been suggested for clinical big data [34, 35].

Although arguably valuable, big data is difficult to analyze due
to the massive volume of the raw data and its diversity, as shown
in Figure 1. Therefore, instead of the raw big data, a large dataset
is often extracted from the raw data to generate a secondary
storage of data for analysis purposes. This data extraction is
applied, for example, when a computer tomography scan is
involved in clinical trials and only the physician diagnosis based
on the scan is included in data analysis. Similarly, a large
volume of descriptive data on various kinds of samplings, tests,
or assays can be extracted with only the key parameters kept.
As a consequence, the data analyzed in clinical medicine is

usually from secondary datasets that contain only data of
interest. The secondary datasets, although still large, are not
terabytes in size. Additionally, due to the nature of clinical trials,
a large dataset in clinical medicine usually does not have an
overwhelming number of samples. Kjaergard et al [36] defined
clinical trials with 1000 or more participants as large, and the
studies in clinical medicine titled big/large, data/dataset
generally have thousands of attributes, but only hundreds of
samples [37-39].

For this paper, we reviewed the literature to determine the
features of clinical big data and determine the methods used for
manipulation and analysis of these data. This paper is focused
on clinical medicine rather than general health care issues;
therefore, we mainly reviewed the studies that appeared relevant
to clinicians. We examined the selected studies to extract
information on research interests, goals, and achievements, and
the implemented methodologies. Our intention was not to
conduct an exhaustive systematic review, but instead to enable
a literature-based discussion of how the big data issue has been
addressed in clinical medicine. Based on our findings, we
discuss the challenges and limitations of analysis of large clinical
datasets.

Table 1. Global growth of big data and computer science papers on big data.

Journal papers, CScConference papers, CSb,cData volume, ZBa,cYear

7121.52009

72622010

23322.52011

477832012

??82015

????442020

aData from oracle [17].
bData from Research Trends [18].
cCS, computer science; ZB, zettabytes (1 zettabyte = 1000 terabytes = 106 petabytes = 1018 gigabytes, GB).
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Figure 1. A schematic of the issues surrounding storage and use of big data. Clinical big data, as well as big data in other disciplines, have been
surrounded by a number of issues and challenges, including (but not limited to): generation, storage, curation, extraction, integration, analysis, visualization,
etc. ANN: artificial neuron network; EMR: electronic medical record; MPP: massively parallel-processing; PCA: principle component analysis; ROI:
return of investment; SVM: support vector machine.

Methods

We conducted a literature review to identify studies on big data
in medicine, especially clinical medicine. We used different
combinations of keywords to search PubMed, Science Direct,
Web of Knowledge, and Google Scholar for literature of interest,
mainly from the last 10 years. The key words were: "big data
medicine", "large dataset medicine", “clinical big data”, “clinical
large dataset”, “clinical data warehouse”, “clinical database”,
“clinical data mining”, “biomedical big data”, “biomedical
database”, “biomedical data warehouse”, “healthcare big data”,
“healthcare database”, and “healthcare data warehouse”.

Results

Big Data in Clinical Medicine
Big data plays an important role in medical and clinical research
and has been leveraged in clinically relevant studies. Major
research institute centers and funding agencies have made large
investments in the arena. For example, the National Institutes
of Health recently committed US $100 million for the big data
to Knowledge (BD2K) initiative [40]. The BD2K defines
“biomedical” big data as large datasets generated by research
groups or individual investigators and as large datasets generated

by aggregation of smaller datasets. The most well-known
examples of medical big data are databases maintained by the
Medicare and Healthcare Cost and Utilization Project (with
over 100 million observations). One of the differences between
medical big data and large datasets from other disciplines is
that clinical big data are often collected based on protocols (ie,
fixed forms) and therefore are relatively structured, partially
due to the extraction process that simplify raw data as mentioned
above. This feature can be traced back to the Framingham Heart
Study [41], which has followed a cohort in the town of
Framingham, Massachusetts since 1948. Vast amounts of data
have been collected through the Framingham Heart Study, and
the analysis has informed our understanding of heart diseases,
including the effects of diet, exercise, medications, and obesity
on risk [42]. There are many other clinical databases with
different scopes, including but not limited to, prevalence and
trend studies, risk factor studies, and genotype-phenotype
studies.

Prevalence and Trend Studies
One of the major uses for clinical big data is in analysis of the
prevalence or trends of a disease or phenotype among different
populations. An early big data study evaluated a cohort
consisting of 890,394 US veterans with diabetes followed from
2002 through 2006 [43]. Bermejo-Sanchez et al [44] observed
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326 of the birth defect Amelia among 23 million live births,
stillbirths, and fetal anomalies from 23 countries and 4
continents, and found the trend of higher prevalence of Amelia
among younger mothers. Histological features that differ
between chronic idiopathic inflammatory bowel disease and
normality and between Crohn’s disease and ulcerative colitis
were identified in 809 large bowel endoscopic biopsies [45].
Kelly et al [46] studied the prevalence of hip abnormalities of
8192 subjects with hemophilia A and B. Siregar et al [47]
performed a population-based study on patients after cardiac
surgery in all 16 cardiothoracic surgery centers in the
Netherlands. Elshazly et al [48] examined 1.3 million US adults
for patient-level discordance of non-high-density lipoprotein
cholesterol and low-density lipoprotein cholesterol. Chan and
McGarey [49] summarize how large datasets can be analyzed
to achieve population-based conclusions, specifically for
determination of secular trends, health disparities, geographic
variation, and evaluation of specific diseases and treatments.
This paper also summarized the strengths and limitations of
large-sized datasets and addressed issues such as missing data
and bias. These issues will also be discussed in brief below.

Risk Factor Studies
Clinical big data can also be used to determine causality, effect,
or association between risk factors and the disease of interest.
Ursum et al [50] examined the relationships between
seroconversion and patient age with inflammatory effects of
autoantibodies in 18,658 rheumatoid arthritis patients and
controls, and showed that citrullinated proteins and peptides
were more reliable markers for rheumatoid arthritis than was
Immunoglobulin M rheumatoid factor. Ajdacic-Gross et al [51]
examined the data on 11,905 Swiss conscripts from 2003 for
stuttering and found that there was no single overwhelming risk
factor for stuttering, although premature birth and parental
alcohol abuse appeared influential. Data collected on 14,433
patients from the 155 Veterans Administration medical centers
in all 50 US states, Puerto Rico, and the District of Columbia
were used to identify the alcohol dependence of medications
[52]. By analysis of 53,177 cases of contrast administration in
35,922 patients from the Radiology and Cardiac Catheterization
Laboratory databases, an increase in contrast nephropathy was
associated with use of sodium bicarbonate [53].
Echocardiography and electrocardiogram-gated single-photon
emission computed tomography traces for the evaluation of left
ventricular ejection fraction were compared in 534 patients [54].
Zhang et al [55] examined clinical data of 16,135 adult patients
and elucidated the relationships between glycemic, blood
glucose level, and intake of insulin with mortality. Mitchel et
al [56] studied the effect of 2 types of insulin on 7720 patients
selected from 8 million in UK. Kobayashi et al [57] analyzed
19,070 records on right hemicolectomy from 3500 Japanese
hospitals and successfully developed a risk model. It should be
noted that in these studies, the terms of “association” and
“causality” must be rigorously distinguished; most of the studies
claimed association, whereas causality was rarely asserted.

Genotype–Phenotype Studies
With the advancement of genotyping technology, an increasing
amount of risk-factor studies have attempted to assess

association on the genetic level through evaluation of gene
expression and/or genomic data obtained from patients and
controls. For example, clinical and genetic data from 5700
patients who had been treated with warfarin were used to create
an algorithm to estimate the appropriate dose [58]. Causality
of autism spectrum disorders has been investigated by analysis
of 31,516 clinical cases on copy number variation in patients
versus 13,696 controls [59]. Koefoed et al [60] made efforts to
assess the effects of signal transmission and calculated all
combinations of three genotypes from 803 single-nucleotide
polymorphism (SNP) genotypes (2.3 billion combinations) for
1355 controls and 607 patients with bipolar disorder. These
studies are similar to risk-factor studies, yet often the big data
is significantly larger in volume due in genetic analyses than in
risk-factor studies.

Method Development Studies
A number of studies have taken advantage of clinical big data
to establish new methods or techniques, or to develop new tools
to enable analysis of data and decision making. In a typical
example, Hill et al [61] designed an interface to use clinical
data to evaluate risk ratios for various diseases to aid in
evaluation of treatment options. Liu et al [62, 63] have used
large-scale data analysis to optimize diagnosis of breast cancer
from full-field digital mammography images. Lin et al [64]
made efforts to formalize the phenotype variable in the database
Genotypes and Phenotypes. Stephen et al [65] developed an
algorithm to categorize pediatric patients presenting with
respiratory distress into different subtypes using clinical
variables from a clinical data warehouse. Clinical data
warehouses or databases have been created from radiotherapy
clinical trial data [66], gene mutations [67], cancer patient data
[68, 69], kidney disease patient data [70], and gastrointestinal
surgery patient data [71]. Additionally, studies have focused on
personalized big data [72], citizen-centric health care versus
patient-centric health care [72, 73], medication orders [74, 75],
and decision making and information management/retrieval in
general [75-80]. The dramatic increase in the number of studies
with large scope in the past few years indicates an increasing
desire of researchers to manipulate clinical big data; “big
data-assisted clinics” may be expected in the near future.

Discussion

Diversity of Data in Clinical Medicine
The huge body of medical research that has been performed
using large datasets demonstrates the broad spectrum of data
resources used and shows that the structure of the medical
dataset depends on the research question. Data from different
subareas of medical research have broad diversity in terms of
numbers of entries, types of data stored (or levels),
dimensionality, and sample size [81]. Datasets obviously differ
greatly in size: gene expression datasets derived from
high-throughput microarray and next-generation sequencing
technologies, such as those that analyze SNPs and copy number
variations, tend to be massive, whereas clinical trial dataset are
not as big. Phan et al [82] suggested that data in medicine be
divided into four different levels: the molecular level (eg,
genome data), cellular and tissue level (eg, stem cell
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differentiation data), clinical and patient level (eg, clinical trial
data), and biomedical knowledge base level (ie, a comprehensive
data collection). Additionally, data tend to have different levels
of dimensionality (ie, number of attributes or parameters, p)
and sample sizes (ie, number of records/entries, n). Typical
datasets fall into one of three categories, as summarized by
Sinha et al [83]: large n, small p; small n, large p; and large n,
large p. Thanks to advancements in computational technology,
most algorithms can handle low-dimensional data (ie, large n,
small p) without encountering significant difficulty.

Most clinical data, however, is high-dimensional (ie, small n,
large p or large n, large p) due to a limited number of patients.
One typical example comes from a study of 69 Broca’s aphasic
patients (ie, n=69) who were tested with nearly 6000 stimulus
sentences (ie, p~6000) [84]. With similar dimensionality,
Mitchell et al [39] studied bipolar disorder where the sample
consisted of only 217 patients. For high-dimensional data, each
point, sample, or element is described by many attributes [83]
with the involvement of the “curse of dimensionality” [85].
Because high-dimensional data are sparse in dimensions, most
classification or clustering approaches do not work well because
the increase in problem space reduces the overall density of
data samples. To solve this problem, compression methods and
significance testing are usually used to either reduce the
dimensionality or select relevant features before data analysis
by some sort of data preprocessing [83].

Methods for Manipulation of Clinical Big Data

Technologies for Data Storage and Handling
Due to the massiveness and complexity of big data, nonrelational
and distributed databases such as Apache Hadoop [86], Google
BigTable [87], NoSQL [88], and massively parallel-processing
databases are used rather than traditional relational databases
to store data. A large number of biostatistics software packages
have been used to handle large clinical datasets, some of which
enabled the features of cloud-based or distributed computing.
Popular software packages include, but are not limited to, SAS
[36, 51-53], Mplus [51], SPSS [36, 39, 45], PP-VLAM [89],
Stata [90], and R [91]. These technologies and tools greatly
facilitate the handling of big data.

Methodologies for Data Preprocessing
Clinical raw big data can be highly diverse and uninformative
without preprocessing. Extraction of a diagnosis from raw
computer tomography data is an example of one of the
predominant manners in which clinical big data are
preprocessed. This type of processes relies on a specialist’s
personal expertise and can be a source of bias. Most early
analyses of big data, including that collected by the Framingham
Heart Study adopted some form of preprocessing; therefore,
challenges exist in curation [6]. As an alternative to expert
preprocessing, computational algorithms or statistical
approaches, including compression methods, significance
testing, or normalization [92] can be implemented to preprocess
raw big data. This methodology may also introduce bias and
can cause uncertainty problems during data integration.

In some scenarios, visualization can be a part of data
preprocessing (as well as result exhibition). Typical examples

in this regard include the use of heat maps [93], gene alignments
[94], protein structure visualization [95], scatterplot matrix, tree
visualization, network visualization, parallel coordinates, stacked
graphs, etc. When the big data of interest are scattered or stored
at different resources, data integration [96, 97] and federation
[98] is an important phase during data preprocessing.
Approaches such as the Information Manifold [97], which allows
browsing and querying of multiple networked information
sources, can provide solutions to uncertainty problems after
data integration and mapping [99].

Statistical Approaches to Data Analysis
A number of popular statistical methods have been implemented
in clinical data analysis. The most common include linear
regression and logistic regression [30], latent class analysis
[100], principle component analysis [101], and classification
and regression trees [100]. Additionally, logarithmic and
square-root transformations [58], naive Bayes methods [102],
decision trees [103], neural networks [104], support vector
machines [105], and hidden Markov models [83] are also used
to study problems in medical data.

When a dataset is not overly complicated, a single test (eg, a
simple Student’s t test) should be powerful enough to reject a
null hypothesis, and single hypothesis testing is the methodology
to adopt [106]. Sometimes one cannot establish the significance
of a hypothesis until different statistical tests have been applied
to the same dataset. Multiple testing is often used to identify
correlations that deserve further investigation [107]. Algorithms
for false discovery rate [108] and family-wise error rate [109]
calculation have been implemented for multiple testing in studies
on gene expression data and datasets with similar levels of
complexity.

Challenges and Limitations of Use of Clinical Big Data

Overview
Big data itself has many limitations. These limitations include
“adequacy, accuracy, completeness, nature of the reporting
sources, and other measures of the quality of the data”, as
summarized previously [110]. The consequences of these
limitations are succinctly summarized in the book titled
“Models. Behaving. Badly.” [111]. Modeling can often lead to
a biased statistical correlation or inference, sometimes known
as a “false discovery”. Clinical big data users face a large
spectrum of challenges, including but not limited to sample size,
selection bias, interpretation problem, missing values,
dependence problems, and data handling methodologies.

Sample Size
One of the counterintuitive challenges in analysis of big data
clinical datasets is that sometimes the sample size is not as big,
compared with the number of attributes to allow statistically
significant analysis. Population survey methods are sometimes
adopted because these methods can provide larger datasets.
However, the authenticity and accuracy of this type of data are
arguably limited; hence, survey methods cannot be reliably used
to produce an adequate description or prediction [39].
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Selection Bias
Any dataset is a selection of data rather than the whole data
world; therefore, selection bias is a very real limitation [112]
even if the sample size is big. In that sense, all studies of clinical
data have this limitation to some degree [39].

Interpretation Problem
Gebregziabher et al [43] stated that the datasets generated
through many translational research projects to answer questions
of public health interest are not self-explanatory due to
complexity and inadequate description/documentation of the
dataset's parameters and associated metadata. The methodologies
for interpreting the data can therefore be subject to all sorts of
philosophical debate. For example, the data may not be totally
naïve or objective and interpretation may be biased by subjective
assumptions and/or manipulations by individual analysts.

Missing Values
It is common problem that large datasets have missing values,
and in many cases the problem can be significant [44]. A typical
example is the Framingham Heart Study where data on serum
uric acid are largely missing. Additionally, the covariates (ie,
attributes) may not fully capture the degree of risk for patients
and may cause uncertainty in results [53].

Dependence Problems
One issue that has been often neglected is the dependence of
data. Dependence between either attributes or samples in
datasets can cause the degrees of freedom to decrease and/or
some statistical principles to no longer apply. Examples of this

are found when the same patients are evaluated multiple times
through follow-up and when correlations in gene expression
are drawn based on samples from different patients treated with
similar medications [83]. As many statistical methods do not
account for dependence, results from these tests may be
unreliable if this issue is not properly addressed before the data
analysis.

Data Handling Methodologies
Effective processing of big data has always been a challenge.
One must consider all the aspects of the dataset, including
collection, curation, extraction, integration, interpretation,
imputation, and selection of appropriate statistical methods,
during processing and analysis. It has been claimed that analyses
of large datasets are often suboptimal due to the researcher’s
lack of knowledge of the available tools and methodologies
[83]. On the other hand, algorithms to handle big data are also
underdeveloped to some extent and deserve more attention
[113].

Conclusions
This paper reviewed studies that analyzed clinical big data and
that discuss issues related to data storage and analysis. Big data
is becoming a common feature of biological and clinical studies.
Today, a single biophysical researcher can generate terabytes
of data in hours. Over the last decade, clinical datasets have
grown incredibly in size, mostly due to use of modern
technologies for collection and recording of data. Researchers
who use clinical big data face multiple challenges, and the data
itself has limitations. It is imperative that methodologies for
data analysis keep pace with our ability to collect and store data.
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