Published on in Vol 9, No 4 (2021): April
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/25347, first published
.
Journals
- Bond R, Finlay D, Al-Zaiti S, Macfarlane P. Machine learning with electrocardiograms: A call for guidelines and best practices for ‘stress testing’ algorithms. Journal of Electrocardiology 2021;69:1 View
- Petmezas G, Stefanopoulos L, Kilintzis V, Tzavelis A, Rogers J, Katsaggelos A, Maglaveras N. State-of-the-Art Deep Learning Methods on Electrocardiogram Data: Systematic Review. JMIR Medical Informatics 2022;10(8):e38454 View
- Kim S, Park Y, Kim J, Kim E, Lee D, Lee J, Cheon J, Park J. Magnetic Manipulation of Locomotive Liquid Electrodes for Wireless Active Cardiac Monitoring. ACS Applied Materials & Interfaces 2023;15(24):28954 View
- Moreno-Sánchez P, García-Isla G, Corino V, Vehkaoja A, Brukamp K, van Gils M, Mainardi L. ECG-based data-driven solutions for diagnosis and prognosis of cardiovascular diseases: A systematic review. Computers in Biology and Medicine 2024;172:108235 View
- Huang Y, Wang M, Li Y, Cai W. A lightweight deep learning approach for detecting electrocardiographic lead misplacement. Physiological Measurement 2024;45(5):055006 View