Published on in Vol 7, No 3 (2019): Jul-Sep
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/13785, first published
.
Journals
- Choi B, Kim M, Kim S. Risk prediction models for the development of oral-mucosal pressure injuries in intubated patients in intensive care units: A prospective observational study. Journal of Tissue Viability 2020;29(4):252 View
- Hyun S, Kaewprag P, Cooper C, Hixon B, Moffatt-Bruce S. Exploration of critical care data by using unsupervised machine learning. Computer Methods and Programs in Biomedicine 2020;194:105507 View
- Tarekegn A, Ricceri F, Costa G, Ferracin E, Giacobini M. Predictive Modeling for Frailty Conditions in Elderly People: Machine Learning Approaches. JMIR Medical Informatics 2020;8(6):e16678 View
- Orciuoli F, Orciuoli F, Peduto A. A Mobile Clinical DSS based on Augmented Reality and Deep Learning for the home cares of patients afflicted by bedsores. Procedia Computer Science 2020;175:181 View
- Cox J. Risk Factors for Pressure Injury Development Among Critical Care Patients. Critical Care Nursing Clinics of North America 2020;32(4):473 View
- Cox J, Schallom M. Pressure Injuries in Critical Care Patients: A Conceptual Schema. Advances in Skin & Wound Care 2021;34(3):124 View
- Monteiro D, Borges E, Spira J, Garcia T, Matos S. INCIDENCE OF SKIN INJURIES, RISK AND CLINICAL CHARACTERISTICS OF CRITICAL PATIENTS. Texto & Contexto - Enfermagem 2021;30 View
- Dweekat O, Lam S, McGrath L. An Integrated System of Multifaceted Machine Learning Models to Predict If and When Hospital-Acquired Pressure Injuries (Bedsores) Occur. International Journal of Environmental Research and Public Health 2023;20(1):828 View
- Shui A, Kim P, Aribindi V, Huang C, Kim M, Rangarajan S, Schorger K, Aldrich J, Lee H. Dynamic Risk Prediction for Hospital-Acquired Pressure Injury in Adult Critical Care Patients. Critical Care Explorations 2021;3(11):e0580 View
- Ciasullo M, Orciuoli F, Douglas A, Palumbo R. Putting Health 4.0 at the service of Society 5.0: Exploratory insights from a pilot study. Socio-Economic Planning Sciences 2022;80:101163 View
- Di Martino F, Orciuoli F. A computational framework to support the treatment of bedsores during COVID-19 diffusion. Journal of Ambient Intelligence and Humanized Computing 2024;15(1):219 View
- ÇAYIRTEPE Z, ŞENEL A. Risk Management In Intensive Care Units With Artificial Intelligence Technologies: Systematic Review of Prediction Models Using Electronic Health Records. Journal of Basic and Clinical Health Sciences 2022;6(3):958 View
- Levy J, Lima J, Miller M, Freed G, O'Malley A, Emeny R. Machine Learning Approaches for Hospital Acquired Pressure Injuries: A Retrospective Study of Electronic Medical Records. Frontiers in Medical Technology 2022;4 View
- Andersson J, Imberg S, Rosengren K. Documentation of pressure ulcers in medical records at an internal medicine ward in university hospital in western Sweden. Nursing Open 2023;10(3):1794 View
- Dweekat O, Lam S, McGrath L. A Hybrid System of Braden Scale and Machine Learning to Predict Hospital-Acquired Pressure Injuries (Bedsores): A Retrospective Observational Cohort Study. Diagnostics 2022;13(1):31 View
- Jiang X, Wang Y, Wang Y, Zhou M, Huang P, Yang Y, Peng F, Wang H, Li X, Zhang L, Cai F. Application of an infrared thermography-based model to detect pressure injuries: a prospective cohort study. British Journal of Dermatology 2022;187(4):571 View
- Sotoodeh M, Zhang W, Simpson R, Hertzberg V, Ho J. A Comprehensive and Improved Definition for Hospital-Acquired Pressure Injury Classification Based on Electronic Health Records: Comparative Study. JMIR Medical Informatics 2023;11:e40672 View
- Dweekat O, Lam S, McGrath L. Machine Learning Techniques, Applications, and Potential Future Opportunities in Pressure Injuries (Bedsores) Management: A Systematic Review. International Journal of Environmental Research and Public Health 2023;20(1):796 View
- Lin B, Ma J, Fang Y, Lei P, Wang L, Qu L, Wu W, Jin L, Sun D. Advances in Zebrafish for Diabetes Mellitus with Wound Model. Bioengineering 2023;10(3):330 View
- Dweekat O, Lam S, McGrath L. An Integrated System of Braden Scale and Random Forest Using Real-Time Diagnoses to Predict When Hospital-Acquired Pressure Injuries (Bedsores) Occur. International Journal of Environmental Research and Public Health 2023;20(6):4911 View
- Kim M, Ryu J, Choi B. Development and Effectiveness of a Clinical Decision Support System for Pressure Ulcer Prevention Care Using Machine Learning. CIN: Computers, Informatics, Nursing 2023;41(4):236 View
- Cho E, Kim S, Heo S, Shin J, Hwang S, Kwon E, Lee S, Kim S, Kang B. Machine learning-based predictive models for the occurrence of behavioral and psychological symptoms of dementia: model development and validation. Scientific Reports 2023;13(1) View
- Gou L, Zhang Z, A. Y, Liu B. Risk factors for medical device-related pressure injury in ICU patients: A systematic review and meta-analysis. PLOS ONE 2023;18(6):e0287326 View
- Picoito R, Lapuente S, Ramos A, Rabiais I, Deodato S, Nunes E. Risk assessment instruments for pressure ulcer in adults in critical situation: a scoping review. Revista Latino-Americana de Enfermagem 2023;31 View
- Picoito R, Lapuente S, Ramos A, Rabiais I, Deodato S, Nunes E. Instrumentos para la evaluación del riesgo de lesiones por presión en adultos en estado crítico: scoping review. Revista Latino-Americana de Enfermagem 2023;31 View
- Pinhasov T, Isaacs S, Donis-Garcia M, Oropallo A, Brennan M, Rao A, Landis G, Agrell-Kann M, Li T. Reducing lower extremity hospital-acquired pressure injuries: a multidisciplinary clinical team approach. Journal of Wound Care 2023;32(Sup7):S31 View
- Picoito R, Lapuente S, Ramos A, Rabiais I, Deodato S, Nunes E. Instrumentos para a avaliação do risco de lesões por pressão para adultos em situação crítica: scoping review*. Revista Latino-Americana de Enfermagem 2023;31 View
- Yusharyahya S, Legiawati L, Astriningrum R, Jonlean R, Andhira V. Characteristics of pressure injuries among geriatric patients at an Indonesian tertiary hospital: a cross-sectional study. Medical Journal of Indonesia 2023;32(3):183 View
- Ma Y, He X, Yang T, Yang Y, Yang Z, Gao T, Yan F, Yan B, Wang J, Han L. Evaluation of the risk prediction model of pressure injuries in hospitalized patient: A systematic review and meta‐analysis. Journal of Clinical Nursing 2024 View
- Zhang N, Li Y, Li X, Li F, Jin Z, Li T, Ma J. Incidence of medical device-related pressure injuries: a meta-analysis. European Journal of Medical Research 2024;29(1) View
- Al-Mamari F, Al-Rawajfah O, Al Sabei S, Al-Wahaibi K. Hospital-acquired pressure ulcers among adult ICU patients in tertiary hospitals in Oman: a one-year prevalence study. Journal of Wound Care 2024;33(Sup10):S10 View