Research Letter
Abstract
This research letter summarizes early lessons from 4 enterprise implementations of artificial intelligence–enabled customer relationship management platforms in health care and describes governance practices associated with improvements in affordability, adherence, and access at program level.
JMIR Med Inform 2026;14:e83564doi:10.2196/83564
Keywords
Introduction
Health systems continue to face pressure to improve patient outcomes while safeguarding affordability and equitable access [-]. Electronic health records support clinical workflows but are not designed for proactive patient outreach or service coordination []. Artificial intelligence (AI)-enabled customer relationship management (CRM) platforms support automated eligibility checks, outreach, and risk alerts [-]. This research letter summarizes early descriptive insights from enterprise implementations of AI-enabled CRM platforms.
Methods
Program Selection and Sampling Frame
A case-informed thematic analysis was conducted across 4 large health care programs. These were the largest CRM-based patient service deployments accessible to the author during this period. Programs were included if they had live AI-enabled CRM workflows for affordability, adherence, or access for at least 12 months. Each program operated independently with different teams, geographies, and product lines. Data reflect operations recorded between January 2019 and March 2024 across the 4 programs. All outcomes reflect a descriptive analysis of the operational dashboards and do not infer causal relationships.
Data Sources and Definitions
The following three data sources were used, each aggregated at program level.
- Governance documents summarizing decision logs, compliance checkpoints, and escalation patterns.
- Stakeholder feedback was gathered through routine program review meetings and documented in standard internal templates.
- Internal dashboards tracking key operational indicators. These dashboards were deidentified, contained no patient level data, and were part of routine program monitoring.
Program level outcome metrics were defined as follows.
- Adoption: proportion of active CRM users among provisioned patient service staff within a measurement window.
- Affordability efficiency: average time for co-pay or financial assistance verification.
- Therapy initiation time: average days between benefit verification and therapy start.
- Discontinuation rate: proportion of enrolled patients who stopped therapy during a defined period.
Baseline values came from preimplementation operations, and follow-up reflected the first stable post launch period. Findings are observational.
Ethical Considerations
This work used only aggregated, deidentified operational dashboards and program documents. No patient-level identifiable data or human subject interaction occurred. Institutional review board approval was not required.
Results
Theme 1: Patient Outcome Alignment and Sponsorship
Programs that centered goals on patient experience and outcomes such as therapy initiation time or affordability enrollment sustained stronger executive sponsorship. Programs framed as IT upgrades struggled to maintain alignment.
Theme 2: Continuous Engagement and Adoption
High adoption correlated with structured engagement of patient service teams and compliance officers. Regular feedback cycles supported adoption above 85% vs below 60% in minimally engaged programs [].
Theme 3: Hybrid Governance Improved Delivery Efficiency
All 4 programs used a hybrid model that combined Agile sprints with scheduled compliance reviews. This approach reduced backlog resolution time by about 30%. summarizes the governance structure.

Theme 4: Program-Level Improvements in Affordability, Adherence, and Access
Changes reflect aggregated dashboards and are not causal. Examples include a reduction in co-pay verification time from 4 days to 3 days (25% faster), a 12% reduction in therapy discontinuation rates, and a shortening of therapy initiation time from 20 days to 17 days (15% faster) ().
| Patient service | Artificial intelligence functionality | Outcome | Example (anonymized) |
| Affordability | Automated co-pay verification | Reduced processing time (4 days to 3 days, a 25% improvement) | Fortune 10 rollout (USA) |
| Adherence | Predictive risk alerts | 12% reduction in therapy discontinuation | Consulting-led program |
| Access | Automated prior authorization | Therapy initiation shortened (20 days to 17 days, a 15% improvement) | Enterprise-wide program |
Discussion
Summary of Findings
Across 4 large-scale implementations, AI-enabled CRM platforms supported improvements in affordability, adherence, and access through workflow automation, risk identification, and coordinated service tasks. The most consistent predictors of success were early alignment with patient-centered outcomes, continuous stakeholder engagement, and hybrid governance structures.
Interpretation and Limitations
Results reflect aggregated, unaudited operational dashboards and cannot establish causality [,]. Findings describe program-level improvements observed post implementation and may not generalize to organizations with different scales, regulatory environments, or infrastructure maturity.
Future Directions
Future studies should incorporate multi-site comparative designs, validated outcomes, and integration with digital therapeutics and device streams to strengthen evidence for CRM-enabled patient service transformation.
Conflicts of Interest
None declared.
References
- Digital Health and Innovation. Global Strategy on Digital Health 2020–2025. Geneva, Switzerland. World Health Organization; 2025.
- Greenhalgh T, Wherton J, Papoutsi C, Lynch J, Hughes G, A'Court C, et al. Beyond adoption, a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale up, spread, and sustainability of health and care technologies. J Med Internet Res. Nov 01, 2017;19(11):e367. [FREE Full text] [CrossRef] [Medline]
- Blease C, Kaptchuk TJ, Bernstein MH, Mandl KD, Halamka JD, DesRoches CM. Artificial intelligence and the future of primary care: exploratory qualitative study of UK general practitioners' views. J Med Internet Res. Mar 20, 2019;21(3):e12802. [FREE Full text] [CrossRef] [Medline]
- Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. Jan 2019;25(1):44-56. [CrossRef] [Medline]
- Adler-Milstein J, Holmgren A, Kralovec P, Worzala C, Searcy T, Patel V. Electronic health record adoption in US hospitals: the emergence of a digital "advanced use" divide. J Am Med Inform Assoc. Nov 01, 2017;24(6):1142-1148. [FREE Full text] [CrossRef] [Medline]
- Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. Jun 2019;6(2):94-98. [FREE Full text] [CrossRef] [Medline]
- Obermeyer Z, Emanuel EJ. Predicting the future, big data, machine learning, and clinical medicine. N Engl J Med. Sep 29, 2016;375(13):1216-1219. [CrossRef]
- Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. Dec 2017;2(4):230-243. [FREE Full text] [CrossRef] [Medline]
- Wang Y, Kung L, Wang W, Cegielski C. An integrated big data analytics-enabled transformation model: Application to health care. Information & Management. Jan 2018;55(1):64-79. [CrossRef]
- Rumsfeld JS, Joynt KE, Maddox TM. Big data analytics to improve cardiovascular care: promise and challenges. Nat Rev Cardiol. Jun 2016;13(6):350-359. [CrossRef] [Medline]
Abbreviations
| AI: artificial intelligence |
| CRM: customer relationship management |
Edited by A Benis; submitted 05.Sep.2025; peer-reviewed by E Oluwagbade, A Okoye; comments to author 22.Oct.2025; revised version received 18.Nov.2025; accepted 01.Jan.2026; published 02.Feb.2026.
Copyright©Anup Kant Gupta. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 02.Feb.2026.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included.

