Published on in Vol 7, No 4 (2019): Oct-Dec
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/14756, first published
.
Journals
- Shah N, Konchak C, Chertok D, Au L, Kozlov A, Ravichandran U, McNulty P, Liao L, Steele K, Kharasch M, Boyle C, Hensing T, Lovinger D, Birnberg J, Solomonides A, Halasyamani L, Dou D. Clinical Analytics Prediction Engine (CAPE): Development, electronic health record integration and prospective validation of hospital mortality, 180-day mortality and 30-day readmission risk prediction models. PLOS ONE 2020;15(8):e0238065 View
- Schwartz J, Moy A, Rossetti S, Elhadad N, Cato K. Clinician involvement in research on machine learning–based predictive clinical decision support for the hospital setting: A scoping review. Journal of the American Medical Informatics Association 2021;28(3):653 View
- Wong C, Chen C, Rossi L, Abila M, Munu J, Nakamura R, Eftekhari Z. Explainable Tree-Based Predictions for Unplanned 30-Day Readmission of Patients With Cancer Using Clinical Embeddings. JCO Clinical Cancer Informatics 2021;(5):155 View
- Nguyen O, Washington C, Clark C, Miller M, Patel V, Halm E, Makam A. Man vs. Machine: Comparing Physician vs. Electronic Health Record–Based Model Predictions for 30-Day Hospital Readmissions. Journal of General Internal Medicine 2021;36(9):2555 View
- Jasinska-Piadlo A, Bond R, Biglarbeigi P, Brisk R, Campbell P, Browne F, McEneaneny D. Data-driven versus a domain-led approach to k-means clustering on an open heart failure dataset. International Journal of Data Science and Analytics 2023;15(1):49 View
- McGilvray M, Heaton J, Guo A, Masood M, Cupps B, Damiano M, Pasque M, Foraker R. Electronic Health Record-Based Deep Learning Prediction of Death or Severe Decompensation in Heart Failure Patients. JACC: Heart Failure 2022;10(9):637 View
- Sharma V, KULKARNI V, MCALISTER F, EURICH D, KESHWANI S, SIMPSON S, VOAKLANDER D, SAMANANI S. Predicting 30-Day Readmissions in Patients With Heart Failure Using Administrative Data: A Machine Learning Approach. Journal of Cardiac Failure 2022;28(5):710 View
- Kazmi S, Kambhampati C, Cleland J, Cuthbert J, Kazmi K, Pellicori P, Rigby A, Clark A. Dynamic risk stratification using Markov chain modelling in patients with chronic heart failure. ESC Heart Failure 2022;9(5):3009 View
- Walczak A, Moszczyński P, Krzesiński P. Evolution of Hemodynamic Parameters Simulated by Means of Diffusion Models. Applied Sciences 2021;11(23):11412 View
- Jasinska-Piadlo A, Bond R, Biglarbeigi P, Brisk R, Campbell P, McEneaneny D. What can machines learn about heart failure? A systematic literature review. International Journal of Data Science and Analytics 2022;13(3):163 View
- Alvarez-Romero C, Martinez-Garcia A, Ternero Vega J, Díaz-Jimènez P, Jimènez-Juan C, Nieto-Martín M, Román Villarán E, Kovacevic T, Bokan D, Hromis S, Djekic Malbasa J, Beslać S, Zaric B, Gencturk M, Sinaci A, Ollero Baturone M, Parra Calderón C. Predicting 30-Day Readmission Risk for Patients With Chronic Obstructive Pulmonary Disease Through a Federated Machine Learning Architecture on Findable, Accessible, Interoperable, and Reusable (FAIR) Data: Development and Validation Study. JMIR Medical Informatics 2022;10(6):e35307 View
- Hamilton A, Strauss A, Martinez D, Hinson J, Levin S, Lin G, Klein E. Machine learning and artificial intelligence: applications in healthcare epidemiology. Antimicrobial Stewardship & Healthcare Epidemiology 2021;1(1) View
- Ben-Assuli O, Heart T, Klempfner R, Padman R. Human-machine collaboration for feature selection and integration to improve congestive Heart failure risk prediction. Decision Support Systems 2023;172:113982 View
- Sharma V, Joon T, Kulkarni V, Samanani S, Simpson S, Voaklander D, Eurich D. Predicting 30-day risk from benzodiazepine/Z-drug dispensations in older adults using administrative data: A prognostic machine learning approach. International Journal of Medical Informatics 2023;178:105177 View
- Soliman A, Agvall B, Etminani K, Hamed O, Lingman M. The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study. Journal of Medical Internet Research 2023;25:e46934 View
- Sharma V, Kulkarni V, Joon T, Eurich D, Simpson S, Voaklander D, Wright B, Samanani S. Predicting falls-related admissions in older adults in Alberta, Canada: a machine-learning falls prevention tool developed using population administrative health data. BMJ Open 2023;13(8):e071321 View
- Kononova Y, Abramyan L, Funkner A, Babenko A. Machine learning prediction of in-hospital recurrent infarction and cardiac death in patients with myocardial infarction. Informatics in Medicine Unlocked 2024;45:101443 View
- Zhang W, Cheng W, Fujiwara K, Evans R, Zhu C. Predictive Modeling for Hospital Readmissions for Patients With Heart Disease: An Updated Review From 2012–2023. IEEE Journal of Biomedical and Health Informatics 2024;28(4):2259 View
- Fares M, Liu H, da Silva Etges A, Zhang B, Warner J, Olson J, Fedorka C, Khan A, Best M, Kirsch J, Simon J, Sanders B, Costouros J, Zhang X, Jones P, Haas D, Abboud J. Utility of Machine Learning, Natural Language Processing, and Artificial Intelligence in Predicting Hospital Readmissions After Orthopaedic Surgery. JBJS Reviews 2024;12(8) View