JMIR Publications

JMIR Medical Informatics

Clinical informatics, decision support for health professionals, electronic health records, and ehealth infrastructures.


Journal Description

JMIR Medical Informatics (JMI, ISSN 2291-9694) focusses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.

Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2015: 4.532), JMIR Med Inform has a different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.

JMIR Medical Informatics journal features a rapid and thorough peer-review process, professional copyediting, professional production of PDF, XHTML, and XML proofs (ready for deposit in PubMed Central/PubMed). The site is optimized for mobile and iPad use.

JMIR Medical Informatics adheres to the same quality standards as JMIR and all articles published here are also cross-listed in the Table of Contents of JMIR, the worlds' leading medical journal in health sciences / health services research and health informatics (


Recent Articles:

  • Blood Glucose Level. Image Source: Author:Amanda Mills, USCDCP. License: public domain (CC0).

    Evaluating the Effect of Web-Based Iranian Diabetic Personal Health Record App on Self-Care Status and Clinical Indicators: Randomized Controlled Trial


    Background: There are 4 main types of chronic or noncommunicable diseases. Of these, diabetes is one of the major therapeutic concerns globally. Moreover, Iran is among the countries with the highest incidence of diabetic patients. Furthermore, library-based studies by researchers have shown that thus far no study has been carried out to evaluate the relationship between Web-based diabetic personal health records (DPHR) and self-care indicators in Iran. Objective: The objective of this study is to examine the effect of Web-based DPHR on self-care status of diabetic patients in an intervention group as compared with a control group. Methods: The effect of DPHR on self-care was assessed by using a randomized controlled trial (RCT) protocol for a 2-arm parallel group with a 1:1 allocation ratio. During a 4-month trial period, the control group benefited from the routine care; the intervention group additionally had access to the Web-based DPHR app besides routine care. During the trial, 2 time points at baseline and postintervention were used to evaluate the impact of the DPHR app. A sample size of 72 people was randomly and equally assigned to both the control and intervention groups. The primary outcome measure was the self-care status of the participants. Results: Test results showed that the self-care status in the intervention group in comparison with the control group had a significant difference. In addition, the dimensions of self-care, including normal values, changes trend, the last measured value, and the last time measured values had a significant difference while other dimensions had no significant difference. Furthermore, we found no correlation between Web-based DPHR system and covariates, including scores of weight, glycated hemoglobin (HbA1c), serum creatinine, high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, and planned visit adherence, as well as the change trend of mean for blood glucose and blood pressure. Conclusions: We found that as a result of the Web-based DPHR app, the self-care scores in the intervention group were significantly higher than those of the control group. In total, we found no correlation between the Web-based DPHR app and covariates, including planned visit adherence, HbA1c, serum creatinine, HDL, LDL, total cholesterol, weight, and the change trend of mean for blood glucose and blood pressure. ClinicalTrial: Iranian Registry of Clinical Trials (IRCT): 2013082914522N1; 14522&number=1 (Archived by WebCite at

  • human-group-silhouette-personal. Image source: Author: Geralt. License: CC0 Public Domain. Image modified by authors.

    Population Analysis of Adverse Events in Different Age Groups Using Big Clinical Trials Data


    Background: Understanding adverse event patterns in clinical studies across populations is important for patient safety and protection in clinical trials as well as for developing appropriate drug therapies, procedures, and treatment plans. Objectives: The objective of our study was to conduct a data-driven population-based analysis to estimate the incidence, diversity, and association patterns of adverse events by age of the clinical trials patients and participants. Methods: Two aspects of adverse event patterns were measured: (1) the adverse event incidence rate in each of the patient age groups and (2) the diversity of adverse events defined as distinct types of adverse events categorized by organ system. Statistical analysis was done on the summarized clinical trial data. The incident rate and diversity level in each of the age groups were compared with the lowest group (reference group) using t tests. Cohort data was obtained from, and 186,339 clinical studies were analyzed; data were extracted from the 17,853 clinical trials that reported clinical outcomes. The total number of clinical trial participants was 6,808,619, and total number of participants affected by adverse events in these trials was 1,840,432. The trial participants were divided into eight different age groups to support cross-age group comparison. Results: In general, children and older patients are more susceptible to adverse events in clinical trial studies. Using the lowest incidence age group as the reference group (20-29 years), the incidence rate of the 0-9 years-old group was 31.41%, approximately 1.51 times higher (P=.04) than the young adult group (20-29 years) at 20.76%. The second-highest group is the 50-59 years-old group with an incidence rate of 30.09%, significantly higher (P<.001) when compared with the lowest incidence in the 20-29 years-old group. The adverse event diversity also increased with increase in patient age. Clinical studies that recruited older patients (older than 40 years) were more likely to observe a diverse range of adverse events (P<.001). Adverse event diversity increased at an average rate of 77% for each age group (older than 30 years) until reaching the 60-69 years-old group, which had a diversity level of 54.7 different types of adverse events per trial arm. The 70-100 years-old group showed the highest diversity level of 55.5 events per trial arm, which is approximately 3.44 times more than the 20-29 years-old group (P<.001). We also observe that adverse events display strong age-related patterns among different categories. Conclusion: The results show that there is a significant adverse event variance at the population level between different age groups in clinical trials. The data suggest that age-associated adverse events should be considered in planning, monitoring, and regulating clinical trials.

  • Clinicians working with data to improve clinical care. Image created and copyright owned by authors.

    Weighting Primary Care Patient Panel Size: A Novel Electronic Health Record-Derived Measure Using Machine Learning


    Background: Characterizing patient complexity using granular electronic health record (EHR) data regularly available to health systems is necessary to optimize primary care processes at scale. Objective: To characterize the utilization patterns of primary care patients and create weighted panel sizes for providers based on work required to care for patients with different patterns. Methods: We used EHR data over a 2-year period from patients empaneled to primary care clinicians in a single academic health system, including their in-person encounter history and virtual encounters such as telephonic visits, electronic messaging, and care coordination with specialists. Using a combination of decision rules and k-means clustering, we identified clusters of patients with similar health care system activity. Phenotypes with basic demographic information were used to predict future health care utilization using log-linear models. Phenotypes were also used to calculate weighted panel sizes. Results: We identified 7 primary care utilization phenotypes, which were characterized by various combinations of primary care and specialty usage and were deemed clinically distinct by primary care physicians. These phenotypes, combined with age-sex and primary payer variables, predicted future primary care utilization with R2 of .394 and were used to create weighted panel sizes. Conclusions: Individual patients’ health care utilization may be useful for classifying patients by primary care work effort and for predicting future primary care usage.

  • Clinicians in Intensive Care Unit. Copyright: Calleamanecer
Image Source: License:  Creative Commons Attribution-Share Alike 3.0.

    Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach


    Background: Sepsis is one of the leading causes of mortality in hospitalized patients. Despite this fact, a reliable means of predicting sepsis onset remains elusive. Early and accurate sepsis onset predictions could allow more aggressive and targeted therapy while maintaining antimicrobial stewardship. Existing detection methods suffer from low performance and often require time-consuming laboratory test results. Objective: To study and validate a sepsis prediction method, InSight, for the new Sepsis-3 definitions in retrospective data, make predictions using a minimal set of variables from within the electronic health record data, compare the performance of this approach with existing scoring systems, and investigate the effects of data sparsity on InSight performance. Methods: We apply InSight, a machine learning classification system that uses multivariable combinations of easily obtained patient data (vitals, peripheral capillary oxygen saturation, Glasgow Coma Score, and age), to predict sepsis using the retrospective Multiparameter Intelligent Monitoring in Intensive Care (MIMIC)-III dataset, restricted to intensive care unit (ICU) patients aged 15 years or more. Following the Sepsis-3 definitions of the sepsis syndrome, we compare the classification performance of InSight versus quick sequential organ failure assessment (qSOFA), modified early warning score (MEWS), systemic inflammatory response syndrome (SIRS), simplified acute physiology score (SAPS) II, and sequential organ failure assessment (SOFA) to determine whether or not patients will become septic at a fixed period of time before onset. We also test the robustness of the InSight system to random deletion of individual input observations. Results: In a test dataset with 11.3% sepsis prevalence, InSight produced superior classification performance compared with the alternative scores as measured by area under the receiver operating characteristic curves (AUROC) and area under precision-recall curves (APR). In detection of sepsis onset, InSight attains AUROC = 0.880 (SD 0.006) at onset time and APR = 0.595 (SD 0.016), both of which are superior to the performance attained by SIRS (AUROC: 0.609; APR: 0.160), qSOFA (AUROC: 0.772; APR: 0.277), and MEWS (AUROC: 0.803; APR: 0.327) computed concurrently, as well as SAPS II (AUROC: 0.700; APR: 0.225) and SOFA (AUROC: 0.725; APR: 0.284) computed at admission (P<.001 for all comparisons). Similar results are observed for 1-4 hours preceding sepsis onset. In experiments where approximately 60% of input data are deleted at random, InSight attains an AUROC of 0.781 (SD 0.013) and APR of 0.401 (SD 0.015) at sepsis onset time. Even with 60% of data missing, InSight remains superior to the corresponding SIRS scores (AUROC and APR, P<.001), qSOFA scores (P=.0095; P<.001) and superior to SOFA and SAPS II computed at admission (AUROC and APR, P<.001), where all of these comparison scores (except InSight) are computed without data deletion. Conclusions: Despite using little more than vitals, InSight is an effective tool for predicting sepsis onset and performs well even with randomly missing data.

  • Health news. Image source: License:CC0 Public Domain.

    Characterizing the (Perceived) Newsworthiness of Health Science Articles: A Data-Driven Approach


    Background: Health science findings are primarily disseminated through manuscript publications. Information subsidies are used to communicate newsworthy findings to journalists in an effort to earn mass media coverage and further disseminate health science research to mass audiences. Journal editors and news journalists then select which news stories receive coverage and thus public attention. Objective: This study aims to identify attributes of published health science articles that correlate with (1) journal editor issuance of press releases and (2) mainstream media coverage. Methods: We constructed four novel datasets to identify factors that correlate with press release issuance and media coverage. These corpora include thousands of published articles, subsets of which received press release or mainstream media coverage. We used statistical machine learning methods to identify correlations between words in the science abstracts and press release issuance and media coverage. Further, we used a topic modeling-based machine learning approach to uncover latent topics predictive of the perceived newsworthiness of science articles. Results: Both press release issuance for, and media coverage of, health science articles are predictable from corresponding journal article content. For the former task, we achieved average areas under the curve (AUCs) of 0.666 (SD 0.019) and 0.882 (SD 0.018) on two separate datasets, comprising 3024 and 10,760 articles, respectively. For the latter task, models realized mean AUCs of 0.591 (SD 0.044) and 0.783 (SD 0.022) on two datasets—in this case containing 422 and 28,910 pairs, respectively. We reported most-predictive words and topics for press release or news coverage. Conclusions: We have presented a novel data-driven characterization of content that renders health science “newsworthy.” The analysis provides new insights into the news coverage selection process. For example, it appears epidemiological papers concerning common behaviors (eg, alcohol consumption) tend to receive media attention.

  • Image created and copyright owned by authors.

    Satisfaction Levels and Factors Influencing Satisfaction With Use of a Social App for Neonatal and Pediatric Patient Transfer Information Systems: A...


    Background: The treatment of neonatal and pediatric patients is limited to certain medical institutions depending on treatment difficulty. Effective patient transfers are necessary in situations where there are limited medical resources. In South Korea, the government has made a considerable effort to establish patient transfer systems using various means, such as websites, telephone, and so forth. However, in reality, the effort has not yet been effective. Objective: In this study, we ran a patient transfer information system using a social app for effective patient transfer. We analyzed the results, satisfaction levels, and the factors influencing satisfaction. Methods: Naver Band is a social app and mobile community application which in Korea is more popular than Facebook. It facilitates group communication. Using Naver Band, two systems were created: one by the Neonatal Intensive Care Unit and the other by the Department of Pediatrics at Chonbuk National University Children's Hospital, South Korea. The information necessary for patient transfers was provided to participating obstetricians (n=51) and pediatricians (n=90). We conducted a survey to evaluate the systems and reviewed the results retrospectively. Results: The number of patients transferred was reported to increase by 65% (26/40) obstetricians and 40% (23/57) pediatricians. The time taken for transfers was reported to decrease by 72% (29/40) obstetricians and 59% (34/57) pediatricians. Satisfaction was indicated by 83% (33/40) obstetricians and 89% (51/57) pediatricians. Regarding factors influencing satisfaction, the obstetricians reported communication with doctors in charge (P=.03) and time reduction during transfers (P=.02), whereas the pediatricians indicated review of the diagnosis and treatment of transferred patients (P=.01) and the time reduction during transfers (P=.007). Conclusions: The users were highly satisfied and different users indicated different factors of satisfaction. This finding implies that users’ requirements should be accommodated in future developments of patient transfer information systems.

  • Image Source: Q&A, copyright,,
Licensed under Creative Commons Attribution cc-by 2.0

    A Semi-Supervised Learning Approach to Enhance Health Care Community–Based Question Answering: A Case Study in Alcoholism


    Background: Community-based question answering (CQA) sites play an important role in addressing health information needs. However, a significant number of posted questions remain unanswered. Automatically answering the posted questions can provide a useful source of information for Web-based health communities. Objective: In this study, we developed an algorithm to automatically answer health-related questions based on past questions and answers (QA). We also aimed to understand information embedded within Web-based health content that are good features in identifying valid answers. Methods: Our proposed algorithm uses information retrieval techniques to identify candidate answers from resolved QA. To rank these candidates, we implemented a semi-supervised leaning algorithm that extracts the best answer to a question. We assessed this approach on a curated corpus from Yahoo! Answers and compared against a rule-based string similarity baseline. Results: On our dataset, the semi-supervised learning algorithm has an accuracy of 86.2%. Unified medical language system–based (health related) features used in the model enhance the algorithm’s performance by proximately 8%. A reasonably high rate of accuracy is obtained given that the data are considerably noisy. Important features distinguishing a valid answer from an invalid answer include text length, number of stop words contained in a test question, a distance between the test question and other questions in the corpus, and a number of overlapping health-related terms between questions. Conclusions: Overall, our automated QA system based on historical QA pairs is shown to be effective according to the dataset in this case study. It is developed for general use in the health care domain, which can also be applied to other CQA sites.

  • Image Source: the ward, copyright allenran 917,, Licensed under Creative Commons Attribution cc-by 2.0

    Forecasting Daily Patient Outflow From a Ward Having No Real-Time Clinical Data


    Objective: Our study investigates different models to forecast the total number of next-day discharges from an open ward having no real-time clinical data. Methods: We compared 5 popular regression algorithms to model total next-day discharges: (1) autoregressive integrated moving average (ARIMA), (2) the autoregressive moving average with exogenous variables (ARMAX), (3) k-nearest neighbor regression, (4) random forest regression, and (5) support vector regression. Although the autoregressive integrated moving average model relied on past 3-month discharges, nearest neighbor forecasting used median of similar discharges in the past in estimating next-day discharge. In addition, the ARMAX model used the day of the week and number of patients currently in ward as exogenous variables. For the random forest and support vector regression models, we designed a predictor set of 20 patient features and 88 ward-level features. Results: Our data consisted of 12,141 patient visits over 1826 days. Forecasting quality was measured using mean forecast error, mean absolute error, symmetric mean absolute percentage error, and root mean square error. When compared with a moving average prediction model, all 5 models demonstrated superior performance with the random forests achieving 22.7% improvement in mean absolute error, for all days in the year 2014. Conclusions: In the absence of clinical information, our study recommends using patient-level and ward-level data in predicting next-day discharges. Random forest and support vector regression models are able to use all available features from such data, resulting in superior performance over traditional autoregressive methods. An intelligent estimate of available beds in wards plays a crucial role in relieving access block in emergency departments.

  • Image created by and copyright: the authors.

    Evaluation of an Expert System for the Generation of Speech and Language Therapy Plans


    Background: Speech and language pathologists (SLPs) deal with a wide spectrum of disorders, arising from many different conditions, that affect voice, speech, language, and swallowing capabilities in different ways. Therefore, the outcomes of Speech and Language Therapy (SLT) are highly dependent on the accurate, consistent, and complete design of personalized therapy plans. However, SLPs often have very limited time to work with their patients and to browse the large (and growing) catalogue of activities and specific exercises that can be put into therapy plans. As a consequence, many plans are suboptimal and fail to address the specific needs of each patient. Objective: We aimed to evaluate an expert system that automatically generates plans for speech and language therapy, containing semiannual activities in the five areas of hearing, oral structure and function, linguistic formulation, expressive language and articulation, and receptive language. The goal was to assess whether the expert system speeds up the SLPs’ work and leads to more accurate, consistent, and complete therapy plans for their patients. Methods: We examined the evaluation results of the SPELTA expert system in supporting the decision making of 4 SLPs treating children in three special education institutions in Ecuador. The expert system was first trained with data from 117 cases, including medical data; diagnosis for voice, speech, language and swallowing capabilities; and therapy plans created manually by the SLPs. It was then used to automatically generate new therapy plans for 13 new patients. The SLPs were finally asked to evaluate the accuracy, consistency, and completeness of those plans. A four-fold cross-validation experiment was also run on the original corpus of 117 cases in order to assess the significance of the results. Results: The evaluation showed that 87% of the outputs provided by the SPELTA expert system were considered valid therapy plans for the different areas. The SLPs rated the overall accuracy, consistency, and completeness of the proposed activities with 4.65, 4.6, and 4.6 points (to a maximum of 5), respectively. The ratings for the subplans generated for the areas of hearing, oral structure and function, and linguistic formulation were nearly perfect, whereas the subplans for expressive language and articulation and for receptive language failed to deal properly with some of the subject cases. Overall, the SLPs indicated that over 90% of the subplans generated automatically were “better than” or “as good as” what the SLPs would have created manually if given the average time they can devote to the task. The cross-validation experiment yielded very similar results. Conclusions: The results show that the SPELTA expert system provides valuable input for SLPs to design proper therapy plans for their patients, in a shorter time and considering a larger set of activities than proceeding manually. The algorithms worked well even in the presence of a sparse corpus, and the evidence suggests that the system will become more reliable as it is trained with more subjects.

  • Source:; CC0 Public Domain.

    Data Safe Havens and Trust: Toward a Common Understanding of Trusted Research Platforms for Governing Secure and Ethical Health Research


    In parallel with the advances in big data-driven clinical research, the data safe haven concept has evolved over the last decade. It has led to the development of a framework to support the secure handling of health care information used for clinical research that balances compliance with legal and regulatory controls and ethical requirements while engaging with the public as a partner in its governance. We describe the evolution of 4 separately developed clinical research platforms into services throughout the United Kingdom-wide Farr Institute and their common deployment features in practice. The Farr Institute is a case study from which we propose a common definition of data safe havens as trusted platforms for clinical academic research. We use this common definition to discuss the challenges and dilemmas faced by the clinical academic research community, to help promote a consistent understanding of them and how they might best be handled in practice. We conclude by questioning whether the common definition represents a safe and trustworthy model for conducting clinical research that can stand the test of time and ongoing technical advances while paying heed to evolving public and professional concerns.

  • UVON method diagram, created and uploaded by the author.
Common Creatives Attribution-NonCommercial 4.0 International (CC BY-NC).

    Evaluating Health Information Systems Using Ontologies


    Background: There are several frameworks that attempt to address the challenges of evaluation of health information systems by offering models, methods, and guidelines about what to evaluate, how to evaluate, and how to report the evaluation results. Model-based evaluation frameworks usually suggest universally applicable evaluation aspects but do not consider case-specific aspects. On the other hand, evaluation frameworks that are case specific, by eliciting user requirements, limit their output to the evaluation aspects suggested by the users in the early phases of system development. In addition, these case-specific approaches extract different sets of evaluation aspects from each case, making it challenging to collectively compare, unify, or aggregate the evaluation of a set of heterogeneous health information systems. Objectives: The aim of this paper is to find a method capable of suggesting evaluation aspects for a set of one or more health information systems—whether similar or heterogeneous—by organizing, unifying, and aggregating the quality attributes extracted from those systems and from an external evaluation framework. Methods: On the basis of the available literature in semantic networks and ontologies, a method (called Unified eValuation using Ontology; UVON) was developed that can organize, unify, and aggregate the quality attributes of several health information systems into a tree-style ontology structure. The method was extended to integrate its generated ontology with the evaluation aspects suggested by model-based evaluation frameworks. An approach was developed to extract evaluation aspects from the ontology that also considers evaluation case practicalities such as the maximum number of evaluation aspects to be measured or their required degree of specificity. The method was applied and tested in Future Internet Social and Technological Alignment Research (FI-STAR), a project of 7 cloud-based eHealth applications that were developed and deployed across European Union countries. Results: The relevance of the evaluation aspects created by the UVON method for the FI-STAR project was validated by the corresponding stakeholders of each case. These evaluation aspects were extracted from a UVON-generated ontology structure that reflects both the internally declared required quality attributes in the 7 eHealth applications of the FI-STAR project and the evaluation aspects recommended by the Model for ASsessment of Telemedicine applications (MAST) evaluation framework. The extracted evaluation aspects were used to create questionnaires (for the corresponding patients and health professionals) to evaluate each individual case and the whole of the FI-STAR project. Conclusions: The UVON method can provide a relevant set of evaluation aspects for a heterogeneous set of health information systems by organizing, unifying, and aggregating the quality attributes through ontological structures. Those quality attributes can be either suggested by evaluation models or elicited from the stakeholders of those systems in the form of system requirements. The method continues to be systematic, context sensitive, and relevant across a heterogeneous set of health information systems.

  • Radiologist is checking the picture archiving and communication system at Mubarak Hospital. Source and copyright: the authors.

    Users’ Perspectives on a Picture Archiving and Communication System (PACS): An In-Depth Study in a Teaching Hospital in Kuwait


    Background: Picture archiving and communication system (PACS) is a well-known imaging informatics application in health care organizations, specifically designed for the radiology department. Health care providers have exhibited willingness toward evaluating PACS in hospitals to ascertain the critical success and failure of the technology, considering that evaluation is a basic requirement. Objective: This study aimed at evaluating the success of a PACS in a regional teaching hospital of Kuwait, from users’ perspectives, using information systems success criteria. Methods: An in-depth study was conducted by using quantitative and qualitative methods. This mixed-method study was based on: (1) questionnaires, distributed to all radiologists and technologists and (2) interviews, conducted with PACS administrators. Results: In all, 60 questionnaires were received from the respondents. These included 39 radiologists (75% response rate) and 21 technologists (62% response rate), with the results showing almost three-quarters (74%, 44 of 59) of the respondents rating PACS positively and as user friendly. This study’s findings revealed that the demographic data, including computer experience, was an insignificant factor, having no influence on the users’ responses. The findings were further substantiated by the administrators’ interview responses, which supported the benefits of PACS, indicating the need for developing a unified policy aimed at streamlining and improving the departmental workflow. Conclusions: The PACS had a positive and productive impact on the radiologists’ and technologists’ work performance. They were endeavoring to resolve current problems while keeping abreast of advances in PACS technology, including teleradiology and mobile image viewer, which is steadily increasing in usage in the Kuwaiti health system.

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Latest Submissions Open for Peer-Review:

View All Open Peer Review Articles
  • Design, Implementation and Evaluation of Self-describing Diabetes Medical Records

    Date Submitted: Oct 21, 2016

    Open Peer Review Period: Oct 23, 2016 - Dec 18, 2016

    Background: Each patient’s medical record consists of data specific to that patient and is therefore an appropriate source to adapt educational information content. Objective: This study aimed to de...

    Background: Each patient’s medical record consists of data specific to that patient and is therefore an appropriate source to adapt educational information content. Objective: This study aimed to design and implement an information provision system based on the medical records of diabetic patients and to investigate the attitudes of users towards using this product. Methods: The study was organized into three phases: need analysis, design and implementation, and final evaluation. The aim of the need analysis phase was to investigate the questioning behavior of the patient in the real-world context. The design and implementation phase consisted of four stages: determining the minimum dataset for diabetes medical records, collecting and validating content, designing and implementing a diabetes electronic medical record system, and data entry. Evaluating the final system was done based on the constructs of the Technology Acceptance Model (TAM) in the two dimensions of perceived usefulness and perceived ease of use. A semi-structured interview was used for this purpose. Results: Three main categories were extracted for the patient’s perceived usefulness of the system: raising the self-awareness and knowledge of patients, improving their self-care, and improving doctor-patient interaction. Both patients and physicians perceived the personalized sense of information as a unique feature of the application and believed that this feature could have a positive effect on the patient's motivation for learning and using information in practice. Specialists believed that providing personal feedback on the patient’s lab test results along with general explanations encourages the patients to read the content more precisely. Moreover, accessing medical records and helpful notes was a new and useful experience for the patients. Conclusions: One of the key perceived benefits of providing tailored information in the context of medical records was raising patient awareness and knowledge. The results obtained from field observations and interviews has shown that patients were ready to accept the system and had a positive attitude when it was put into practice. The findings related to user attitude can be used as a guideline to design the next phase of the research (i.e., investigation of system effectiveness on patient outcomes).