JMIR Medical Informatics
Clinical informatics, decision support for health professionals, electronic health records, and eHealth infrastructures.
Editor-in-Chief:
Arriel Benis, PhD, FIAHSI, Associate Professor and Head of the Department of Digital Medical Technologies, Holon Institute of Technology (HIT), Israel
Impact Factor 3.8 CiteScore 7.7
Recent Articles

Parkinson disease (PD) presents diagnostic challenges due to its heterogeneous motor and nonmotor manifestations. Traditional machine learning (ML) approaches have been evaluated on structured clinical variables. However, the diagnostic utility of large language models (LLMs) using natural language representations of structured clinical data remains underexplored.

In recent years, the incidence of cognitive diseases has also risen with the significant increase in population aging. Among these diseases, Alzheimer’s disease constitutes a substantial proportion, placing a high-cost burden on healthcare systems. To give early treatment and slow the progression of patient deterioration, it is crucial to diagnose Mild Cognitive Impairment (MCI), a transitional stage.

Artificial intelligence (AI) offers potential solutions to address the challenges faced by a strained mental healthcare system, such as increasing demand for care, staff shortages and pressured accessibility. While developing AI-based tools for clinical practice is technically feasible and has the potential of producing real-world impact, only few are actually implemented into clinical practice. Implementation starts at the algorithm development phase, as this phase bridges theoretical innovation and practical application. The design and the way the AI tool is developed may either facilitate or hinder later implementation and use.

Knee osteoarthritis (KOA) is one of the most prevalent chronic musculoskeletal disorders among the older adult population. Screening populations at risk of rapid progression of osteoarthritis and implementing appropriate early intervention strategies is advantageous for the treatment and prognosis of affected patients.

Psychiatric disorders are diagnostically challenging and often rely on subjective clinical judgment, particularly in resource-limited settings. Large language models (LLMs) have demonstrated potential in supporting psychiatric diagnosis; however, robust evidence from large-scale, real-world clinical data remains limited.

Adult-type diffuse glioma (ADG) is the most common primary malignant tumor of the central nervous system. Its highly invasive nature, marked heterogeneity, and resistance to therapy contribute to a high risk of recurrence and poor prognosis. At present, the lack of reliable prognostic tools poses a significant barrier to the development of individualized treatment strategies.

Electronic health records (EHRs) have the potential to improve service delivery through record keeping and monitoring health outcomes. As countries move toward universal health coverage, digital health tools such as EHRs are essential for achieving this goal. However, EHR implementation in middle-income countries like South Africa faces obstacles.

This Is My Story (TIMS) was started by Chaplain Elizabeth Tracey to promote a humanistic approach to medicine. Patients in the TIMS program are the subject of a guided conversation in which a chaplain interviews either the patient or their loved one. They are asked four questions to elicit clinically actionable information that has been shown to improve communication between patients and medical providers, strengthening medical providers’ empathy. The original recorded conversation is edited into a condensed audio file approximately 1 minute and 15 seconds in length and placed in the electronic health record where it is easily accessible by all providers caring for the patient.

Retrieval-Augmented Generation (RAG) systems have emerged as a powerful technique to enhance the capabilities of large language models (LLMs) by enabling them to access external, up-to-date knowledge in real time, and are being increasingly adopted by researchers in the medical field. In this viewpoint article, we explore the ethical imperatives for implementing RAG systems in clinical nursing environments, with particular attention to how these technologies affect patient care quality and safety. The purpose of this paper is to examine the ethical risks introduced by RAG-enhanced LLMs in clinical nursing and to propose strategic guidelines for their responsible implementation. Key considerations include ensuring accuracy, fairness, transparency, and accountability, as well as maintaining essential human oversight, discussed through a structured analysis. We argue that robust data governance, explainable AI techniques, and continuous monitoring are critical components of a responsible RAG implementation strategy. Ultimately, realizing the benefits of RAG while mitigating ethical concerns requires sustained collaboration among healthcare professionals, AI developers, and policymakers, fostering a future where AI supports patient safety, reduces disparities, and improves the quality of nursing care.

Considering sex and gender improves research quality, innovation, and social equity, while ignoring them leads to inaccuracies and inefficiency in study results. Despite increasing attention on sex- and gender-sensitive medicine, challenges remain in accurately representing gender due to its dynamic and context-specific nature.
Preprints Open for Peer Review
Open Peer Review Period:
-
Open Peer Review Period:
-
Open Peer Review Period:
-
Open Peer Review Period:
-
Open Peer Review Period:
-
Open Peer Review Period:
-








