Maintenance Notice

Due to necessary scheduled maintenance, the JMIR Publications website will be unavailable from Wednesday, July 01, 2020 at 8:00 PM to 10:00 PM EST. We apologize in advance for any inconvenience this may cause you.

Who will be affected?

Advertisement

Currently submitted to: JMIR Medical Informatics

Date Submitted: Jun 15, 2020
(currently open for review)

Warning: This is an author submission that is not peer-reviewed or edited. Preprints - unless they show as "accepted" - should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.

Patient triage by topic modelling of referral letters: Feasibility study

  • Irena Spasic; 
  • Kate Button; 

ABSTRACT

Background:

Musculoskeletal conditions are managed within primary care with referral to secondary care when a specialist opinion is required. The ever increasing demand of healthcare resources emphasizes the need for new triage methods to streamline care pathways with the ultimate aim of ensuring that patients receive timely and optimal care. Information contained in referral letters underpins the referral decision-making process but is yet to be explored systematically for the purposes of treatment prioritization for musculoskeletal conditions.

Objective:

This study aims to explore the feasibility of using natural language processing and machine learning to automate triage of patients with musculoskeletal conditions by analyzing information from referral letters.

Methods:

We used latent Dirichlet allocation to model each referral letter as a finite mixture over an underlying set of topics and model each topic as an infinite mixture over an underlying set of topic probabilities. The topic model was evaluated in the context of automating patient triage. Given a set of treatment outcomes, a binary classifier was trained for each outcome using previously extracted topics as the input features of the machine learning algorithm. In addition, qualitative evaluation was performed to assess human interpretability of topics.

Results:

The prediction accuracy of binary classifiers outperformed the stratified random classifier by a large margin giving an indication that topic modelling could be used to support patient triage. Qualitative evaluation confirmed high clinical interpretability of the topic model.

Conclusions:

The results established the feasibility of using natural language processing and machine learning to automate triage of patients with knee and/or hip pain by analyzing information from their referral letters.


 Citation

Please cite as:

Spasic I, Button K

Patient triage by topic modelling of referral letters: Feasibility study

JMIR Preprints. 15/06/2020:21252

URL: https://preprints.jmir.org/preprint/21252

Download PDF


Request queued. Please wait while the file is being generated. It may take some time.