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Abstract

Background: The pathological and physiological state of patients with intracerebral hemorrhage (ICH) after minimally invasive
surgery (MIS) is a dynamic evolution, and the traditional models cannot dynamically predict prognosis. Clinical data at multiple
time points often show the characteristics of different categories, different numbers, and missing data. The existing models lack
methods to deal with imbalanced data.

Objective: This study aims to develop and validate a dynamic prognostic model using multi–time point data from patients with
ICH undergoing MIS to predict survival and functional outcomes.

Methods: In this study, 287 patients who underwent MIS for ICH were retrospectively collected on the day of surgery, days 1,
3, 7, and 14 after surgery, and the day of drainage tube removal. Their general information, vital signs, laboratory test findings,
neurological function scores, head hematoma volume, and MIS-related indicators were collected. In addition, this study proposes
a multistep attention model, namely the MultiStep Transformer. The model can simultaneously output 3 types of prediction
probabilities for 30-day survival probability, 180-day survival probability, and 180-day favorable functional outcome (modified
Rankin Scale [mRS] 0-3) probability. Five-fold cross-validation was used to evaluate the performance of the model and compare
it with mainstream models and traditional scores. The main evaluation indexes included accuracy, precision, recall, and F1-score.
The predictive performance of the model was evaluated using receiver operating characteristic (ROC) curves; its calibration was
assessed via calibration curves; and its clinical utility was examined using decision curve analysis (DCA). Attributable value
analysis was conducted to assess the key predictive features.

Results: The 30-day survival rate, 180-day survival rate, and 180-day favorable functional outcome rate among 287 patients
were 92.3%, 88.8%, and 52.3%, respectively. In terms of predictive efficacy for survival and functional outcomes, the MultiStep
Transformer model showed a remarkable superiority over traditional scoring systems and other deep learning models. For these
three outcomes, the model achieved areas under the receiver operating characteristic curves (AUROCs) of 0.87 (95% CI 0.82-0.92),
0.85 (95% CI 0.77-0.93), and 0.75 (95% CI 0.72-0.78), with corresponding Brier scores of 0.1041, 0.1115, and 0.231. DCA
confirmed that the model provided a definite clinical net benefit when threshold probabilities ranged within 0.06-0.26, 0.04-0.5,
and 0.21-0.71.
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Conclusions: The MultiStep Transformer model proposed in this study can effectively use imbalanced data to construct a model.
It possesses good dynamic prediction ability for short-term and long-term survival and functional outcome of patients with ICH
undergoing MIS, providing a novel tool for individualized assessment of prognosis among patients with ICH undergoing MIS.

(JMIR Med Inform 2026;14:e86327) doi: 10.2196/86327
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Introduction

Intracerebral hemorrhage (ICH) accounts for 10%-15% of all
stroke cases [1,2]. It is the leading cause of death and disability
worldwide [3], characterized by [4] high morbidity, disability,
and mortality rates. Conservative medical treatment of ICH
exhibits limited efficacy [5]. Surgery for the removal of
hematoma may improve the functional outcome of patients [6].
However, Surgical Trial in Intracerebral Haemorrhage (STICH)
[7] and Surgical Trial in Intracerebral Haemorrhage II (STICH
II) [8] confirmed the failure of craniotomy in improving
functional outcomes among patients with ICH.

Recently, minimally invasive surgery (MIS), characterized by
limited trauma, rapid recovery, and other advantages, has
received increasing attention. Minimally Invasive Surgery Plus
Alteplase for Intracerebral Hemorrhage Evacuation Phase 3
(MISTIE Ⅲ) [9] demonstrated the safety of minimally invasive
hematoma evacuation combined with alteplase thrombolysis.
The Early Minimally Invasive Removal of Intracerebral
Hemorrhage (ENRICH) [10] trial reported that MIS can improve
the functional outcomes of patients with lobar ICH at 180 days.
Although the ENRICH trial provided encouraging evidence
regarding the efficacy of MIS, not all patients with ICH can
benefit from this approach. The uncertainty surrounding the
therapeutic efficacy of MIS poses challenges for assessing the
prognosis of patients.

Moreover, the condition of patients with ICH is a dynamic
process. Although some tools have been used to predict death
or functional outcome in patients with ICH [11-17], these
predictions are mostly based on data at admission or a single
time point, which cannot reflect the dynamic changes of the
disease and also limit the accuracy of prognostic assessment.
Electronic health records (EHRs) containing abundant data
reflect the pathological and physiological state of dynamic
changes in patients with ICH undergoing MIS. However, data
extracted from EHR, without systematic organization, exhibits
characteristics such as variable quality, high dimensionality,
heterogeneity, temporality, and incompleteness [18], posing
significant challenges for predictive modeling. Therefore, this
study aimed to leverage multitime point, imbalanced data from
patients undergoing MIS for ICH to develop a dynamic
prognostic model and validate its performance in predicting
survival and functional outcomes.

Methods

Study Design and Population
Patients with ICH who underwent MIS for ICH in the
Department of Neurology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology were
enrolled in this study. Clinical and imaging data were collected
retrospectively on the day of surgery, 1, 3, 7, and 14 days after
surgery, and on the day of drainage tube removal. A deep
learning algorithm was used to construct a dynamic prognostic
model and validate the effect of the model.

In total, 372 patients undergoing MIS for ICH between May
2012 and May 2024 were selected. Among them, 11 cases of
ICH caused by cerebrovascular malformation and coagulopathy,
25 cases with a history of neurological deficit and renal failure,
and 49 patients with missing outcome data were excluded, and
data from 287 patients were analyzed. A flowchart for the patient
selection process is shown in Figure 1.

The inclusion criteria were as follows: (1) patients with
spontaneous acute ICH in basal ganglia or lobar regions based
on cranial computed tomography (CT), who underwent
stereotactic intracranial hematoma puncture and drainage
surgery after admission; (2) ICH hematoma volume 20-100 mL;
(3) age 18-80 years old; (4) surgery within 1 week of onset; and
(5) survival for at least 7 days after admission.

The exclusion criteria were as follows: (1) coagulation disorders,
such as thrombocytopenia and significant abnormal coagulation
indexes caused by hepatitis; (2) traumatic ICH; (3) intracranial
infection and other diseases leading to a significant increase in
intracranial pressure; (4) previous severe heart, liver, kidney,
or lung diseases or functional failure; (5) previous history of
neurological dysfunction; (6) ICH was caused by structural
abnormalities of the cerebral blood vessels (eg, arteriovenous
malformations, intracranial aneurysms, vasculitis, and
moyamoya disease); and (7) ICH was caused by brain tumor or
cerebral infarction and was treated with thrombolytic therapy.

The model was developed and validated in accordance with the
TRIPOD-AI (Transparent Reporting of a multivariable
prediction model for Individual Prognosis Or
Diagnosis–Artificial Intelligence) checklist.
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Figure 1. Patient selection flowchart. ICH: intracerebral hemorrhage; MIS: minimally invasive surgery.

Data Sources and Collection
We electronically extracted clinical data from the EHR of Tongji
Hospital, Tongji Medical College, Huazhong University of
Science and Technology. Data were collected on general
information, vital signs, laboratory test findings, neurological
function scores, and MIS-related metrics, such as the time from
onset to surgery and the duration of drainage tube placement,
along with established neurological scales: the ICH score,
Glasgow Coma Scale (GCS), National Institutes of Health
Stroke Scale (NIHSS), and the functional outcome in patients
with primary intracerebral hemorrhage (FUNC) score. Rapid
segmentation and volume calculation of hematomas on cranial
CT images were conducted using 3D Slicer.

Follow-up and Clinical Outcomes
Follow-up was conducted via telephone call. The primary
outcome was all-cause mortality at 30 days. Secondary outcomes
included all-cause mortality at 180 days and functional outcome
at 180 days. The outcomes were assessed using the modified
Rankin Scale (mRS), which was transformed into a binary
variable, favorable functional outcome (mRS 0-3) and
unfavorable functional outcome (mRS 4-6) [19,20]. The
assessment was conducted by 2 medical doctors (JW and YS),
with discrepancies being resolved through arbitration by a senior
physician (PZ).

Data Processing and Statistical Analysis
Missing values in this study were predominantly attributed to
the absence of imaging features at certain time points, whereas
clinical features (vital signs, laboratory studies, etc) were fully
documented. Instead of imputing the missing imaging features,
the model automatically ignored the corresponding time points

via an attention mechanism and completed representation
learning and outcome prediction solely based on available
temporal imaging features and comprehensive clinical features.
To ensure a consistent input structure across patients and time
points, we adopted a simple zero-imputation strategy during
preprocessing. For patients with missing measurements at
specific time points (eg, when certain laboratory tests or clinical
assessments were not performed on a given day), the
corresponding feature values were set to zero. All features were
standardized before model training so that zero-imputed values
lie within a well-defined range and are distinguishable from
typical observed values.

For continuous variables, intergroup comparisons were
conducted using the t test. The chi-square test was used for
categorical variables. Data are presented as median (IQR), mean
(SD), and range. A P value of <.05 was considered statistically
significant.

Model Development and Training

Modeling Strategy
The changes of clinical indicators after MIS for ICH reflect the
dynamic changes of individual status. Reasonable modeling of
time series data dependence and cross-time point information
interaction is of high importance for survival and prognosis
prediction. We collected a data series of patients’
mu l t i d imens iona l  c l i n i ca l  measu re s :

, where x1d, x3d, x7d,

x14d denote the characteristics at 1, 3, 7, and 14 days after

surgery, respectively. xft denotes fixed features (eg, gender and

age) that do not change over time. xopdenotes the characteristics
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of the day of surgery. In particular, since not all individuals had
the same drainage tube removal time, the corresponding
characteristics were introduced separately.

Our objective was to learn a mapping function f : X → γ, where
γ {0,1}represents the survival and prognosis labels, specifically
defined as 30-day survival, 180-day survival, and 180-day
favorable functional outcome. Crucially, we aimed to establish
a mapping function capable of predicting both future data and
the final labels from postoperative data of any given day. For

instance, when input with first-day postoperative data x1d, the

model was meant to successfully predict subsequent data x3d,

x7d, x14d and the final ternary label γ. The problem was a
multistage, multi–time point, and multivariate time series
classification task.

Since the clinical indicators at each time point in X were not
entirely consistent, it was not feasible to establish a unified
model for cyclic prediction at each time point. Available
machine learning or deep learning models exhibit limited

capability in handling variable dimensional feature data [21].
To address this, we proposed a MultiStep Transformer model
designed to capture nonlinearly evolving clinical features over
time and manage the cross-influences existing between different
time points.

MultiStep Transformer Model Architecture
In the MultiStep Transformer model, we introduced a multistage
feature prediction module and a time-sharing embedding
mechanism. It cooperated with the transformer encoder to realize
the reinforcement modeling of multi–time point sequences.
Specifically, we constructed a multilayer feature prediction
module to predict and train each prognostic data separately.
Finally, the Transformer encoder was used to predict 30-day
survival probability, 180-day survival probability, and 180-day
favorable prognosis probability. The overall process of the
model is shown in Figure 2.

The MultiStep Transformer model was able to receive data at
any time point as input and output for 3 types of prediction
probabilities. The model framework is as follows:

Figure 2. Model diagram.

Multistage Feature Cycle Prediction Module
The core idea of the multistage feature cycle prediction module
was to use the information of current and previous time points
to recursively infer the feature expression of missing or future
time points, which was formulated as

Here, LRt (∙)represents a linear mapping layer specific to the
t-th time point, responsible for establishing recursive
dependencies among the time-series features. This design
effectively mitigated the challenges of incomplete clinical data

and the isolation of temporal features, thereby enhancing the
ability of the model to capture temporal evolutionary trends.

Time-Sharing Feature Embedding
In view of the large difference of input data dimensions and
strong heterogeneity of feature distribution at different time
points, an independent linear mapping layer was designed:

The high-dimensional projection of the input at each time point
was conducted to eliminate the difference in input dimensions
and ensure the consistency of the sequence dimensions of the
input of the transformer encoder. In addition, the independent
mapping parameters Wt and dt captured the unique statistical
characteristics of time points and improved the adaptability of
the model to the information of different stages.
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Transformer Encoder Structure and Time-Series
Dependence Modeling
Through the self-attention mechanism, the transformer encoder
flexibly modeled the interactive dependencies between all
positions in a sequence. It overcame the limitations of traditional
recurrent neural networks and possessed the capabilities of
parallel computation and long-range dependency capture. In
our framework, the same temporal feature sequence was used
simultaneously as the query, key, and value in the self-attention
operation. This design allows feature extraction to be performed
directly on the observed sequence without forcing all patients
to have the same number of time points and therefore naturally
supports variable-length temporal inputs.

Input sequence: concatenate the embedding vectors at all time
points to form an input sequence:

Here, t= 6 represents the number of input feature layers, and B
denotes the batch size for each training or inference step. The
experimental framework supports arbitrary combinations of
time points as input, for example using only Day-1 data or Days
1, 3, 7, and 14, depending on data availability and clinical
requirements.

Encoding process: the multilayer stacked transformer encoder
consisted of multihead self-attention and a feed-forward
network. A single layer was formulated as

Where the same sequence serves as Q, K, and V in the
self-attention module. The model performs multistep,
progressive computation; features from earlier time points are
encoded first, and then information from subsequent time points
is gradually integrated. After multilayer coding, the model
comprehensively considered the influence between different
time points and its feature correlation, and the output sequence
was expressed as:

Z = TransformerEncoder(H) (6)

The encoding vector Zd at the final time point of the sequence
was taken as the representation of the comprehensive temporal
dynamic state of patients.

Survival Prediction Head
The final classification layer was mapped using single-layer
linearity:

Here, σ denotes the sigmoid activation function for generating
binary classification probability outputs. The output data format

was (30 live, 180 live, and 180 heal), representing the probability
of 30-day survival, 180-day survival, and 180-day favorable
functional outcome, respectively.

Training and Prediction Processes
For model training, data were input uniformly, and the model
was trained step by step. Specifically, features from all time

points X = {xft, xop, x1d, x3d, x7d, x14d}were input into the model.

The model first processed the features [xft, xop] through the linear

layer LR1d to compute , and calculate the loss using x1d,
followed by backpropagation to optimize LR1d. Subsequently,
stepwise prediction and optimization were conducted
sequentially based on the mapping layers in the multistage
feature prediction module. All features, including known inputs
and predicted outputs, were combined into a complete feature

sequence . Finally, the
transformer encoded all temporal features to obtain the patient’s
dynamic state representation Z, which was then classified using
a linear layer.

During inference, given the first i temporal features Xi (eg, Xi

= {xft, xop, x1d, x3d}), the model applied masking to the existing
feature time points based on the number of feature layers and
directly computed subsequent features

, finally predicting survival and
prognosis (30 live, 180 live, and 180 heal).

Model hyperparameters were selected empirically based on
preliminary experiments on the training folds. The network was
optimized using the Adam optimizer with a fixed learning rate
of 0.001 and trained for 200 epochs per fold. We used the
cross-entropy loss for outcome prediction, combined with the
feature prediction loss for intermediate temporal features in the
multistage prediction module. The batch size, number of
transformer layers, hidden dimensions, and dropout rate were
tuned within a reasonable range to balance model performance
and overfitting risk.

Model Evaluation
The predictive performances of different models and scores
were compared using accuracy, precision, recall, and F1-score.
The predictive performance of the model was evaluated by the
area under the receiver operating characteristic curve (AUROC).
Calibration curves were plotted to assess the consistency
between the predicted probabilities and the observed outcomes
of the model. In addition, decision curve analysis (DCA) was
performed to evaluate the clinical utility of the model.

Model Interpretation
To gain insight into the decision-making process of the model,
we used attribution values, a technique used to quantify how
much each input feature contributes to the output of the model.
Attribution values revealed the importance of clinical
characteristics in predicting the outcome and helped us
determine which characteristics had the greatest impact on the
model’s decision-making process.
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Ethical Considerations
This study was approved by the Medical Ethics Committee of
Tongji Hospital, Tongji Medical College, Huazhong University
of Science and Technology (TJ-IRB202502129). Given the
retrospective nature of the study and the absence of any direct
interaction with participants, informed consent was exempted
by the ethics committee, and no compensation of any form was
provided. This study adheres to the ethical principles outlined
in the Declaration of Helsinki.

Results

Baseline Characteristics of the Study Population
The mean age of the 287 patients was 53.2 (10.6) years, and
67.9% of the patients were male. Their 30-day survival rate was
92.3%, their 180-day survival rate was 87.8%, and the rate of
favorable functional outcome at 180 days was 52.3%. The
presence of intraventricular hemorrhage, GCS, NIHSS, ICH
score, and FUNC score showed significant differences across
the 3 groups of patients (Tables S1-S3 in Multimedia
Appendices 1-3).

Evaluation of the Model Performance
Due to variations in clinical assessment items across different
time points, the feature categories at each time point were not
entirely consistent. In the collected dataset, there were 48
features on the day of surgery, 47 features on postoperative days
1 and 3, a total of 46 features on postoperative day 7, a total of
10 features on postoperative day 14, and 15 features on the day
of drainage tube removal (feature labels are in Multimedia
Appendix 4). Based on feature dimensions of the patients, we
constructed a MultiStep Transformer model with 4 feature
prediction modules.

Given the limited sample size (287 patients) and single-center
design, we adopted a 5-fold cross-validation scheme for internal
validation. The entire cohort was randomly partitioned into 5
approximately equal subsets. In each iteration, one subset was
held out as the validation (test) set, and the remaining 4 subsets
were used for model training. This process was repeated 5 times

so that each subset served as the validation set exactly once.
Model performance metrics were averaged across the 5 folds
and reported together with their SDs, providing an estimate of
variability and robustness. The outcome labels were not evenly
distributed across classes. To mitigate the impact of class
imbalance, we ensured that the proportion of outcome categories
in each fold of the cross-validation was approximately consistent
with that of the full cohort by using stratified splitting according
to the target labels. In addition, class weights inversely
proportional to class frequencies in the training data were
applied in the loss function to reduce bias toward the majority
class. This strategy helped the model to learn more balanced
decision boundaries across different outcome categories.

We calculated the confusion matrices of the results to obtain
accuracy, precision, recall, and F1-score. Regarding the
prediction results, actual labels were defined as follows: true
positive (TP), positive labels correctly predicted; false positive
(FP), negative labels incorrectly predicted; true negative (TN),
negative labels correctly predicted; false negative (FN), positive
labels incorrectly predicted. The evaluation metrics were
calculated as follows:

For comparison, we selected the commonly used deep learning
models, including temporal convolutional network (TCN), gated
recurrent unit (GRU), and transformer. Table 1 presents the
comparison of prediction performance between the MultiStep
Transformer model and each deep learning model.
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Table 1. Comparison of model performance.

F1-score (%), mean (SD)Recall (%), mean (SD)Precision (%), mean (SD)Accuracy (%), mean (SD)Model and scene

GRUa

81.17 (28.30)75.66 (30.88)100 (0)77.34 (28.89)live_30

70.24 (33.74)63.39 (31.91)98.1 (0.99)66.5 (27.68)live_180

73.49 (8.05)71.92 (10.52)75.61 (6.44)73.70 (7.20)heal_180

TCNb

89.83 (15.30)84.49 (21.23)100 (0)85.55 (19.8)live_30

80.96 (15.30)71.57 (21.23)97.92 (2.55)74.04 (19)live_180

73.90 (8.03)71.94 (12.72)77.09 (2.51)74.68 (5.86)heal_180

Transformer

93.01 (8.50)88 (13.40)100 (0)88.83 (12.53)live_30

83.54 (12.12)74.16 (16.59)98.18 (2.28)76.33 (15.52)live_180

78.28 (7.81)76.43 (13.4)81.75 (3.65)78.95 (5.91)heal_180

MultiStepTransformer (Ours)

95.89 (0.92)95.37 (1.83)96.47 (2.15)92.43 (1.68)live_30

93.55 (1.20)93.22 (3.90)93.99 (1.68)88.80 (3.24)live_180

81.42 (2.82)82.02 (6.05)81.16 (2.13)80.13 (3.68)heal_180

aGRU: gated recurrent unit.
bTCN: temporal convolutional network.

The proposed method achieved the best performance in terms
of accuracy, recall, and F1-score for the 3 categories of
outcomes. The accuracy of the MultiStep Transformer model
was 92.43 (1.68) for 30-day survival, 88.80 (3.24) for 180-day
survival, and 80.13 (3.68) for 180-day favorable functional
outcome, respectively.

Furthermore, we separated the 4 scores (GCS, NIHSS, ICH
score, and FUNC score) from the data to predict the three
categories of outcomes. The FUNC score is associated with the
volume of hematoma, but there were some missing data, and it
could not be combined with the other scores for classification.
We compared the single-score classification and the combined
classification of scores (ICH score, GCS, and NIHSS),
respectively. We also used support vector machine (for
classification). Using the same 5-fold cross validation, their
confusion matrices were calculated to obtain the corresponding
indicators (Table 2).

As can be seen, the NIHSS predicts the best results of the
traditional scores for 30-day survival. The FUNC score was
superior to the other 2 scores in the accurate classification of
180-day survival and 180-day favorable functional outcome. It
significantly improved the prediction of 180-day favorable
functional outcome, indicating that the FUNC score was better
at predicting the long-term prognosis of patients. The
combination of the ICH score, GCS, and NIHSS features
significantly improved 30-day survival prediction, but the FUNC
score still exhibited some advantages in long-term prediction.

Figure 3 presents a comparison of classification accuracy
between the MultiStep Transformer model, traditional scoring
methods, and other deep learning models. The results indicated
that compared to either traditional scoring methods or other
deep learning models, our proposed method offers superior
performance in both short-term and long-term predictions of
the 3 outcome categories. Furthermore, the MultiStep
Transformer model yielded the smallest SD (eg, mean 92.43,
SD 1.68 for accuracy in 30-day survival prediction), reflecting
its consistent performance across different data subsets,
enhanced stability, and strong generalization capability.

Figures 4A, D, and G present the receiver operating
characteristic (ROC) curves of the model for different outcomes,
namely 30-day survival, 180-day survival, and 180-day
favorable functional outcome. The model achieved AUROCs
of 0.87 (95% CI 0.82-0.92), 0.85 (95% CI 0.77-0.93), and 0.75
(95% CI 0.72-0.78) for these 3 outcomes, respectively.

Furthermore, the calibration curves demonstrated good
calibration performance of the model (Figures 4B, E, and H),
with corresponding Brier scores of 0.1041, 0.1115, and 0.231,
respectively. DCA indicated that the model yielded a net benefit
when the threshold probabilities ranged within 0.06-0.26,
0.04-0.5, and 0.21-0.71, respectively (Figures 4C, F, and I). The
above findings confirm that this model exhibits favorable
generalizability.
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Table 2. Comparison of traditional scores.

F1-score (%), mean
(SD)

Recall (%), mean
(SD)

Precision (%), mean (SD)Accuracy (%), mean
(SD)

Score and scene

ICHa score

54.22 (10.68)66.00 (11.4)56.56 (4.66)73.36 (16.52)live_30

53.88 (9.33)58.51 (7.03)55.96 (4.90)71.07 (15.30)live_180

55.65 (5.53)59.67 (3.89)66.05 (6.37)60.52 (5.78)heal_180

GCSb

55.47 (6.98)63.4 (12.93)55.27 (5.30)78.61 (3.63)live_30

57.92 (8.23)61.71 (8.53)57.64 (7.18)76.96 (2.85)live_180

54 (5.61)56.89 (4.59)58.73 (4.62)57.92 (3.74)heal_180

NIHSSc

59.60 (6)67.72 (11.77)58.03 (4.79)83.22 (1.60)live_30

56.94 (9.08)61.67 (11.79)55.88 (7.82)78.31 (2.72)live_180

52.36 (4.51)55.31 (3.29)57.43 (4.79)56.92 (2.45)heal_180

FUNCd score

67.46 (26.83)66.58 (27.95)70 (24.81)81.57 (16.08)live_30

65.99 (27.79)65.75 (28.37)68.75 (25.62)79.56 (18.99)live_180

68.10 (23.25)70.83 (19.43)74.40 (20.49)71.56 (23.01)heal_180

Combination of the ICH score, GCS, and
NIHSS

62.93 (8.07)70.98 (13.28)60.67 (6.36)85.86 (1.61)live_30

59.02 (6.64)63.17 (10.61)58.39 (5.30)79.29 (3.12)live_180

52.91 (6.86)56.00 (5.09)57.37 (6.33)57.58 (3.75)heal_180

MultiStep Transformer (ours)

95.89 (0.92)95.37 (1.83)96.47 (2.15)92.43 (1.68)live_30

93.55 (1.20)93.22 (3.90)93.99 (1.68)88.80 (3.24)live_180

81.42 (2.82)82.02 (6.05)81.16 (2.13)80.13 (3.68)heal_180

aICH: intracerebral hemorrhage.
bGCS: Glasgow Coma Scale.
cNIHSS: National Institutes of Health Stroke Scale.
dFUNC: functional outcome in patients with primary intracerebral hemorrhage.
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Figure 3. Comparison of classification accuracy across models and traditional scoring methods. FUNC: functional outcome in patients with primary
intracerebral hemorrhage; GCS: Glasgow Coma Scale; GRU: gated recurrent unit; ICH: intracerebral hemorrhage; NIHSS: National Institutes of Health
Stroke Scale; TCN: temporal convolutional network.

Figure 4. Results of 5-fold cross-validation: Panels A-C depict the ROC curve, calibration curve, and decision curve for 30-day survival, respectively;
panels D-F represent those for 180-day survival; and panels G-I denote those for 180-day favorable functional outcome. AUC: area under the curve;
ROC: receiver operating characteristic.
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Model Interpretation
In this study, we used deep neural networks to classify clinical
data for predicting patients’ outcomes. Specifically, we
visualized the attribution values calculated by the model
alongside the corresponding input feature values in the same
diagram to interpret the model’s decision-making mechanism.

The attribution values indicated the contribution of each clinical
feature to the model’s output. The feature importance was
relatively similar between postoperative day 1 and day 3, while
some changes emerged in the key clinical features affecting
predictions by days 7 and 14 (Figure 5).

The horizontal axis in Figure 5 represents the indices of the
input features as discrete integers, facilitating the identification
of specific features. The left vertical axis denotes the attribution
values, displayed with blue bars that illustrate each feature’s
relative contribution to the output. The right vertical axis
corresponds to the original feature values, plotted as a red dashed
line to visualize the correspondence between attributions and
raw data. This integrated plot helps identify the most influential
features on the model’s predictions, enabling a more
comprehensive understanding of the model’s behavior.

Figure 5. Visualization of attribution values of features.

Discussion

Principal Findings
This study reports the construction process and model
performance of the MultiStep Transformer model, a novel deep
learning model that can dynamically predict short-term and
long-term survival and functional outcome in patients with ICH
undergoing MIS. The experimental results showed that the
model significantly outperformed the mainstream deep learning
models (GRU, TCN, and transformer) and traditional clinical
scores (GCS, NIHSS, ICH score, and FUNC score) on the 3
prediction tasks of 30-day survival, 180-day survival, and
180-day favorable functional outcome.

In patients undergoing MIS for ICH, neurological functions,
vital signs, imaging findings, and laboratory parameters are
subjected to continuous changes, generating substantial clinical
data. However, temporal data in EHR present challenges,
including irregular recording intervals and variable sequence
lengths across individuals. Meanwhile, most of the previous
studies have conducted predictions at fixed time points, whereas

many clinical scenarios necessitate continuous outcome updates
with the emergence of new data [22]. Therefore, it is essential
to develop a dynamic model to process variably dimensional
features. This approach not only addresses the needs of clinical
practice but also allows personalized management of patients.

The MultiStep Transformer model incorporates innovative
designs to address common challenges in real-world clinical
data, such as missing time points, heterogeneous feature
dimensions, and inconsistent sampling frequencies.

First, multistage feature prediction addresses data missingness.
Through layered stepwise linear mapping, the model not only
imputes missing values at certain time points but also enhances
temporal dependencies among features, thereby improving the
accuracy of predictions.

Second, time point–specific embedding resolves dimensionality
inconsistency. Independent linear embedding layers ensure
unified representation of heterogeneous input data, strengthening
the generalizability of the model.
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Third, the self-attention mechanism of the transformer captures
long-range dependencies. Compared to traditional recurrent
neural networks, the transformer architecture more effectively
learns complex nonlinear dependencies and interactions across
several time points.

Finally, we visualized feature importance through attribution
values. The values revealed which clinical features played a
pivotal role in the final predictions. A higher attribution value
of a feature suggested a greater influence on the model’s
decision-making. The MultiStep Transformer model successfully
captured the dynamic shifts of key perioperative features during
MIS, thereby enhancing the interpretability of the model and
its credibility in clinical practice.

Comparison With Prior Work
TCN is a feedforward network architecture that models time
series by stacking convolutional layers [23]. Under the constraint
of convolutional layers, it can effectively prevent information
leakage. Multilayer convolution can also capture local time
dependence and short-term dynamic changes in multi–time
point clinical data. GRU is a type of recurrent neural network,
which uses a gating unit to control the memory and forgetting
of information. It has a relatively small number of parameters
and high training stability and can model the dependence from
local to global. For clinical data with multiple time points, GRU
can better extract cross-temporal global features [24]. With the
attention mechanism as the core, Transformer can model the
relationships between any time points in a sequence in a global
scope [25], making it suitable for dealing with long sequences
and complex temporal patterns. In addition, it has good parallel
computing ability and can effectively use global information.

Compared to the mainstream deep learning models, the
MultiStep Transformer model offers full usage and efficient
modeling of complex imbalanced time-series data by introducing
a multistage feature cycle prediction module, time-sharing
embedding mechanism, and transformer encoder structure.
Besides, the modular design of the MultiStep Transformer model
enables adaptation to flexible inputs, supports dynamic input
time points, and is suitable for clinical scenarios with different
monitoring frequencies, thereby improving its practicability.

In 30-day survival prediction, GRU, TCN, and transformer
achieved 100% precision, indicating rare false positive errors,
but their low recall suggests many missed diagnoses. The
MultiStep Transformer exhibited a significant improvement in
recall and F1-score, suggesting a more accurate identification
ability while avoiding excessive conservatism. The performance
of all models decreased with the prolongation of prediction
time, but the MultiStep Transformer still showed a high F1-score
in 180-day survival prediction, with greatly improved recall.
These findings imply that it is more sensitive in long-term
prediction and not overly conservative. In the prediction of a
favorable functional outcome at 180 days, all models performed
worse compared to their performance in survival prediction,
highlighting the challenges in predicting functional outcomes.
The MultiStep Transformer was the only model with a recall
of more than 80%, indicating that it was more advantageous in
identifying patients with a greater chance of recovery.

Traditional scoring systems are widely used in clinical practice
due to their simplicity and have demonstrated considerable
value in predicting the outcomes of ICH. For predicting
mortality, the ICH score achieved AUROCs of 0.83-0.84, while
the FUNC score showed AUROCs of 0.79-0.83. In predicting
functional outcomes, the ICH score attained AUROCs of
0.77-0.82, compared to 0.76-0.78 for the FUNC score [26].
When predicting death or severe disability, the NIHSS score
yielded an AUROC of 0.796, the GCS score achieved an
AUROC of 0.650, and the ICH score revealed an AUROC of
0.674 [27]. By comparison, the model developed in this study
demonstrated superior predictive performance. For the prediction
of 30-day survival, 180-day survival, and 180-day favorable
functional outcome, the model achieved AUROCs of 0.87 (95%
CI 0.82-0.92), 0.85 (95% CI 0.77-0.93), and 0.75 (95% CI
0.72-0.78), respectively. Meanwhile, calibration curves and
DCA confirmed that this model has excellent calibration
performance and definite clinical benefit. Furthermore, the
inherent limitations of traditional scoring systems are becoming
increasingly apparent. McCracken et al. indicated that nearly
two decades after its introduction, the predictive accuracy of
the ICH score may no longer be sufficient for contemporary
clinical practice, necessitating adjustments and optimization
[28]. More importantly, the clinical guideline “Guidelines for
Neuroprognostication in Critically Ill Adults with Intracerebral
Hemorrhage” emphasizes that no single score or clinical variable
should be used as the sole basis for prognostic judgment at 3
months or beyond [29]. Accordingly, factors such as
preoperative functional status, surgical complications, and
intervention timing should be comprehensively considered when
developing assessment tools for patients undergoing surgery
[30]. The dynamic prognostic model developed in this study
aligns with this philosophy. From a clinical perspective, accurate
prediction of long-term functional outcomes is crucial for
rehabilitation planning and patient communication. For
predicting 180-day functional outcomes, the most challenging
task, our model achieved an F1-score of 81.42%, significantly
surpassing traditional scoring systems (maximum 71.56%),
suggesting its substantial potential in guiding rehabilitation
strategies.

Limitations
There are some limitations to this study. First, this study was a
single-center retrospective study with a small sample size, which
constitutes the most critical methodological limitation.
Population heterogeneity, treatment variability, and fluctuations
in data quality may potentially compromise model performance.
Although our dataset, spanning over ten years and including
medical records from both local and nonlocal patients, confers
a certain degree of representativeness, and despite rigorous
cross-validation for model performance evaluation, single-center
data are inevitably influenced by institutional clinical protocols
and inherent biases of retrospective data collection. This poses
a distinct challenge for dynamic models, whose generalizability
is limited by institutional variations in feature distributions and
missing patterns. Second, the puncture needle used in MIS leads
to artifacts in CT images, which will affect the accurate
calculation of hematoma volume. Third, the model only
predicted binary outcomes, such as survival or death, favorable
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prognosis, and unfavorable prognosis, but could not predict the
specific mRS score. The prediction ability of the functional
outcome was not comprehensive enough. Finally, we collected
clinical data at a few time points, which may have affected the
performance of the model. In the future, more clinical data at
more time points can help train the model more effectively.

Future Work
All features incorporated into this model are derived from
routine clinical practice in MIS for ICH, eliminating the need
for additional data collection efforts. Meanwhile, the model
supports continuous integration of the latest data and dynamic
updating of prediction outcomes, which can precisely match
the time-varying characteristics of ICH progression and the
clinical decision-making needs of MIS. Leveraging these
advantages, the ideal application of the dynamic prediction
model developed in this study is to be embedded in the EHR
system, thereby providing clinicians with real-time
individualized prognostic predictions to support accurate
decision-making. However, its implementation faces obstacles
such as technical integration and workflow adaptation. Future
work will advance in multiple directions. First, more time-point

data will be incorporated to improve the model’s performance,
and external validation of the model will be conducted in
multicenter, prospective cohorts. This is a key step to evaluate
its real-world generalizability and promote clinical translation.
Second, standardized interfaces will be developed to achieve
seamless integration of the model with different EHR systems
and ensure real-time data updates. Third, the actual impact of
the model on clinical decision-making and final clinical
outcomes will be evaluated in real clinical settings, and a
replicable workflow solution will be formulated.

Conclusions
Based on clinical data, the MultiStep Transformer model uses
deep learning methods to achieve the goal of dynamic,
comprehensive, and accurate prediction. It can stably output
multiple prediction results in a single prognostic model at the
same time. This study explored the individualized management
of patients with ICH undergoing MIS, providing a new method
for predicting short-term and long-term survival and functional
outcomes and bringing a reference for the diagnosis and
treatment of ICH in clinical practice.
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GRU: gated recurrent unit
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NIHSS: National Institute of Health Stroke Scale
ROC: receiver operating characteristic
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TN: true negative
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