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Abstract

Background: Multipleinstancelearning (MIL) iswidely used for dide-level classificationin digital pathology without requiring
expert annotations. However, even partial expert annotations offer valuable supervision; few studies have effectively leveraged
thisinformation within MIL frameworks.

Objective: This study aims to develop and evaluate a ranking-aware MIL framework, called rank induction, that effectively
incorporates partial expert annotations to improve slide-level classification performance under realistic annotation constraints.

Methods: We developed rank induction, aMIL approach that incorporates expert annotations using a pairwise rank lossinspired
by RankNet. The method encourages the model to assign higher attention scores to annotated regions than to unannotated ones,
guiding it to focus on diagnostically relevant patches. We evaluated rank induction on 2 public datasets (Camelyon16 and
DigestPath2019) and an in-house dataset (Seegene Medical Foundation-stomach; SMF-stomach) and tested its robustness under
3 real-world conditions: |ow-data regimes, coarse within-slide annotations, and sparse slide-level annotations.

Results: Rank induction outperformed existing methodologies, achieving an area under the receiver operating characteristic
curve (AUROC) of 0.839 on Camelyon16, 0.995 on DigestPath2019, and 0.875 on SMF-stomach. It remained robust under
low-data conditions, maintaining an AUROC of 0.761 with only 60.2% (130/216) of the training data. When using coarse
annotations (with 2240-pixel padding), performance dightly declined to 0.823. Remarkably, annotating just 20% (18/89) of the
slides was enough to reach near-saturated performance (AUROC of 0.806, vs 0.839 with full annotations).

Conclusions; Incorporating expert annotations through ranking-based supervision improves MIL-based classification. Rank
induction remains robust even with limited, coarse, or sparsely available annotations, demonstrating its practicality in real-world
scenarios.

(JMIR Med Inform 2026;14:e84417) doi: 10.2196/84417
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aretypically divided into smaller patches before being used in
deep learning models. In fully supervised learning settings, this
With the rise of digital pathology, whole slide images (WSls) ~ "eauires patch-level labels—an annotation process that istime
have become essential for computer-assisted diagnosis tasks  coNsuming and labor intensive due to the scarcity of
such as tumor detection, subtype classification, and prognosis Ieaop-contaj ning .patches. To reducg the burden of exhaustive
prediction [1-3]. Due to their extremely high resolution, WSls  @b€ling, the multiple instance learning (MIL) framework has
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emerged as the dominant approach for slide-level prediction.
MIL operates in a weakly supervised setting, using only
dide-level labels and eliminating the need for detailed patch
annotations. Despite this advantage, MIL models still require
large datasets to achieve generalizable performance due to a
weak supervision signal [4]. In data-constrained settings, MIL
training often becomes unstable, leading to a significant
reduction in predictive accuracy. To address the limitations of
weak supervision, recent studies can be broadly categorized
based on the strength of supervision into three main streams:
(1) dlide-level approaches relying solely on dlide labels, (2)
pseudol abel-based methods that infer patch-level labels, and
(3) expert-guided methods leveraging direct annotations.

Slide-level approaches operate solely with dlide-level
supervision but aim to improve performance through
semisupervised learning, self-supervised learning, or
multiresolution architectures [5-12]. For instance, dual-stream
multiple instance learning (DS-MIL) introduced a dual-stream
architecture that models relationships between high- and
low-attention instances to mitigate attention collapse and
improvefeature discrimination [11]. Hierarchical image pyramid
transformer (HIPT) leveraged hierarchical self-supervised vision
transformersto capture multiscale contextual information across
gigapixel WSIs, demonstrating that strong representation
learning can alleviate weak supervision limitations [12].
However, because these approaches still rely only on slide-level
labels, the supervision signal remains weak and cannot fully
guide the model toward diagnostically relevant regions.

Pseudol abel -based methods generate inferred patch-level labels
from attention maps to strengthen the weak supervision signal.
A prominent data-efficient training using pseudolabel is
clustering-constrained attention multiple instance learning
(CLAM), which selects high- and | ow-attention instanceswithin
each dlide to form pseudopositive or pseudonegative sets and
trains an auxiliary instance classifier [13]. Iterative multiple
instance learning proposed an iterative framework that refines
both instance and slide representations by retraining the feature
extractor with attention-derived pseudolabels, though its
performance depends on the stability of theinitial MIL attention
[14]. In general, pseudolabeling techniques aim to fill the gap
in patch-level labelsby generating inferred annotations[13-18].
Degspite their utility, pseudolabels are inherently noisy, as they
areinferred rather than observed. Consequently, MIL pipelines
that solely rely on pseudolabels often suffer from degraded
performance.

In contrast, expert-guided methods offer a promising way to
improve both performance and supervision quality by directly
integrating expert annotations. Nevertheless, this approach
remainsrelatively underexplored compared to other categories.
A notable study described the attention induction model, which
uses pathologist-drawn lesion annotations to guide model
attention [19]. However, by enforcing attention scores
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proportional to the size of the annotated regions, this method
inherently biases the model toward larger areas, increasing the
risk of overlooking small but clinically critical diagnostic
features.

To overcomethislimitation, we propose rank induction, anovel
MIL framework that introduces a pathology-informed inductive
bias. Rather than constraining attention based on region size,
rank induction assumes that annotated regions should carry
higher diagnostic importance than unannotated ones. By learning
relative ranks between patches, our method provides
finer-grained supervision, guiding the model to focus on
diagnostically relevant areas even when annotations are sparse
or training data are limited.

Methods

Problem Definition

We extend the standard MIL framework by incorporating
patch-level annotations from pathologists as explicit instance
labels, either across all training slides or only a subset. In a
typica MIL setting, each WSI is divided into K patches
{X4,.... X}, and only a dide-level label, indicating disease
presence, is provided. A dlide is labeled positive if at least 1
patch contains a lesion and negative if all patches are normal
(for simplicity, we assume afixed K across dlides).

In our extended setting, we additionally use binary labels
{Y1,---Yi} @ the patch level, wherey, [0{0,1}, y,=1, if apatch
overlaps with a pathologist-annotated region, and y,=0
otherwise. The core inductive bias we introduce is simple but
clinically grounded: patches overlapping annotated regions
should receive higher attention than unannotated ones. This
reflects the assumption that tumor-confirmed regions are more
relevant to dlide-level diagnosis than those confirmed to be
normal.

Rank Induction

As illustrated in Figure 1, rank induction consists of 2 key
components. pairwise rank comparison derived from rich
annotation supervision and attention thresholding to filter out
residual noninformative patches. To implement our
ranking-aware attention mechanism, we first define the
computation of patch-wise attention. Let z, denote the feature
vector of patch x, extracted by a backbone feature encoder. We
compute araw attention score s, from z, using an attention layer

and normalize it using softmax: % = (/2 e | napired by
RankNet [20], rank induction introduces a ranking constraint
that encourages higher attention scores for annotated patches
than for nonannotated ones, such that s > s, where 5 is the
attention score for an annotated patch and s for anonannotated
patch.
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Figure 1. Overview of rank induction.

Instance

Whole slide image Tessellation

To avoid the normalization constraint of softmax (>*~"), we
apply the ranking loss directly on the raw attention scores s €

R. We define the pairwise ranking preference using a sigmoid
function:

1
B 1+ ex“p[—cr(si — 8§ — m)]

Here, misamargin parameter that enforces separation between
positive and negative patches and o is a scaling factor. We
exclude same-class pairs (eg, lesion-lesion or normal-normal)
and definethevalid pair set: P={(i,j)ly; = 1,y; =0} . Let ™"
be the ground truth ranking label. The rank lossis defined as:

1

L?‘ank = W Z —F,:JEOQ‘PEJ - (1 —_ pi‘j)log(l - Pi,j)

(i.jer
We jointly optimize the dlide-level binary cross-entropy 1oss
and the rank loss:
L =Lgce * Alrank

where A is a weighting hyperparameter. For slides without
annotated lesions (ie, negative slides), we omit the ranking loss
and only apply the slide-level loss.

To mitigate slide-level representation dilution, where a few
high-attention lesion patches are overwhelmed by numerous
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Pairwise rank Supervision

low-attention nonlesion patches during the attention-weighted
summation, we apply an attention thresholding strategy during
training. Specifically, we threshold the normalized attention
weightsand then renormalizeal (including zero-valued) weights
asfollows:

&

dy ‘= max (E‘i;{ - =, 0), SE A~
K XX g +e

ap =

Here, T isapredefined threshold and K isthe number of patches.
The threshold T is introduced to prevent the dide-level
representation from being dominated by the large number of
negative instances when the bag size is large. For example, in
a dide containing 2000 instances with only 10 lesion patches,
even if attention is highly concentrated on those few positives,
the aggregate contribution from thousands of near-zero attention
weights of negative patches can still overshadow the lesion
signal, leading to degraded slide representations. By applying
T, we effectively suppressthese noise-like weightsand maintain
amore balanced representation across instances.

Datasets

We evaluated rank induction on 2 public datasets (Camelyon16
[21] and DigestPath2019[22]) and an in-house dataset (Seegene
Medical Foundation-stomach; SMF-stomach). Textbox 1
provides adetailed description of the datasets used in this study,
with sample count statistics summarized in Table 1, which
presents the statistics for the 3 datasets.
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Textbox 1. Description of the datasets used in this study.

Camelyonl16: this dataset consists of 399 hematoxylin and eosin-stained whole side images (WSIs) of lymph node sections for breast cancer
metastasis detection. It is originally split into 67.7% (270/399) training slides and 32.3% (129/399) test slides. For model development and
hyperparameter tuning, we further split the 270 training WSIsinto 216 (80%) training slides and 54 (20%) validation sides (an 8:2 split). Each
slide includes a slide-level diagnosis and polygon-based lesion annotations provided by expert pathologists. In this study, slides containing
metastasis were labeled as abnormal, while negative slides were labeled as normal.

DigestPath2019: we used the colonoscopy tissue segmentation dataset from the DigestPath Challenge 2019. The dataset originally includes 660
training images and 212 test images with slide-level labels (benign or malignant). However, because the test set is not publicly available, we
used only the 660 labeled WSIs. We allocated 20% (132/660) of the slides as the test set and used the remaining 80% (528/660) for training and
validation. Specifically, we split the 528 slides into 422 (79.9%) for training and 106 (20.1%) for validation. Each WS is a JPEG image with an
average resol ution of approximately 5000x5000 pixels. For consistency, we mapped malignant samplesto the abnormal class and benign samples
to the normal class.

SMF-stomach (in-house): we constructed an in-house gastric pathology dataset at Seegene Medical Foundation (SMF). Slide preparation and
digitization followed standard operating procedures described by Kim et a [23]. A distinct feature of this dataset, asillustrated in Multimedia
Appendix 1, isthat at least 3 consecutive tissue sections are placed on asingle glass side; however, pixel-level annotations were not exhaustively
applied to every section. A single board-certified pathologist reviewed the slides and provided polygon-based annotations only for representative
regions; thus, unannotated tissue sections may coexist within the same WSI. Following the diagnostic criteria of Ko et a [24], lesions were
originally categorized as malignant, dysplasia, negative, and uncategorized. We excluded the uncategorized class due to its high heterogeneity.
For the binary classification task, we mapped malignant and dysplasia to the abnormal class and negative to the normal class. The final dataset
comprised 209 slides, allocated as 120 (57.4%) for training, 30 (14.4%) for validation, and 59 (28.2%) for testing.

Table 1. Dataset statistics (whole slide images).

Dataset Train Validation Test

Abnormal Normal Abnormal Normal Abnormal Normal
Camelyon16 89 127 22 32 49 80
DigestPath2019 160 262 40 66 50 82
SME-stomach? 81 39 20 10 39 20

85M F-stomach: Seegene Medical Foundation-stomach.

Data Preprocessing

We applied the same preprocessing pipdineto al datasets. First,
we performed tissue-background segmentation using the
multilevel Otsu agorithm. Each WSI was converted to grayscale
and thresholded to generate a binary mask that separated tissue
from the white background. We retained only the foreground
tissue regions and discarded blank or irrelevant areas.

Next, wetessellated each foreground region into nonoverlapping
patches of size 224x224 pixels. For Camelyonl6 and
SMF-stomach, we extracted patches at 20x magnification,
whereas for DigestPath2019, we used the origina image
resolution.

After tessellation, we computed the tissue coverage ratio for
each patch and discarded patches containing less than 5% tissue,
as these were considered mostly empty. Finaly, we used a
ResNet-50 [24] pretrained on ImageNet-1k [25] to extract
features from each patch. Specifically, we used the output of
thethird residual block and applied an adaptive average pooling
layer to obtain a 2048-dimensional feature vector.

Statistical M ethods

To evaluate rank induction, we designed a series of experiments
targeting performance, data efficiency, and annotation use. Our
evaluation included 6 different experiment types, which are
discussed in the following subsections.

https://medinform.jmir.org/2026/1/e84417

Model Comparison

Wetrained and evaluated 7 different MIL models on 3 datasets:
the baseline attention-based MIL (AB-MIL), the attention
induction method, 2 variants of CLAM (single-branch [SB];
multibranch [MB]), DS-MIL, HIPT, and the proposed rank
induction method.

Low-Data Regime

To test data efficiency, we trained models on subsets of the
training data at 20%, 40%, 60%, 80%, and 100% of thefull set.
For each fraction, we trained all 7 models (AB-MIL, attention
induction, CLAM-SB, CLAM-MB, DS-MIL, HIPT, and rank
induction) from scratch and evaluated them on a common
held-out test set.

Annotation Granularity

To simulate real-world coarse annotations, we degraded
annotation precision by expanding the original lesion maskson
Camelyon16 slides. At 40x magnification, we added symmetric
paddings of 0, 448, 896, 1344, 1792, and 2240 pixels to each
polygon annotation. For instance, a 448-pixel padding at 40x
resolution adds 1 patch-width around the lesion, which
corresponds to a 224-pixel patch at 20x
magnification—potentially including norma tissue and
simulating noisy annotations.
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Subset-Annotated Slide Setting

Inreal-world clinical settings, not al slides can be exhaustively
annotated. We tested rank induction under partial supervision
by varying the proportion of positive siides with patch-level
annotations (5%, 10%, 20%, 40%, 60%, and 80%) in the
Camelyon16 training set (111 positive dlides in total). The
remaining positive slides were treated with slide-level labels
only. Negative slides, by definition, had no lesion annotations.

Ablation Test

To assess the contribution of attention thresholding, we
performed an ablation study with threshold values
T0{0,0.25,0.5,1,2,5}. The case of T=0 served as the reference
condition (ie, without attention thresholding). We compared
WS classification performance and the cumulative attention
weight assigned to nonlesion patches on the test set to examine
how different thresholds affect model behavior.

Attention Localization

To assess interpretability, we compared how different MIL
models spatially focus on tumor regions in Camelyon16. This
is not a dense pixel-wise segmentation map; rather, it is a
ranking over discrete patches, with scores defined for all patches
inthe dlide [13]. Because no established gold standard protocol
exists for evaluating such attention maps, we quantified spatial
alignment between attention and expert lesion annotations using
3 metrics. intersection over union (IoU), Dice score, and
pointing game [25]. For each WSI, we ranked al patches by
attention weight and then selected only the top a% relative to
the number of tumor-annotated patches in that slide (aJ{ 1, 5,
10, 20, 50, 75, 100} ). To ensure that theideal case could always
achieve a score of 1, loU and Dice score were computed by
sampling up to the number of tumor-annotated patches, whereas
the pointing game was evaluated by sampling from all patches
inthe slide. We then computed 1oU and Dice score between the
selected high-attention patches and the tumor-annotated patches,
averaged over positive test dides. We a so measured the pointing
game by calculating a hit rate, defined as whether at least 1 of
the top a highest attention patches fell within the annotated
tumor region (classified as a hit). For all malignant test slides,
localization accuracy was defined as hits divided by the sum of
hits and misses.

For model evaluation, we computed area under the receiver
operating characteristic curve (AUROC), area under the
precision-recall curve (AUPRC), and accuracy for slide-level
classification. All results were averaged over a 10-fold Monte
Carlo cross-validation. We assessed statistical significanceusing
the Mann-Whitney U test, with P values <.05 considered
statistically significant.

Experiment Details

We implemented the models in Python using the PyTorch deep
learning framework. WS data preprocessing was carried out
with OpenSlide, OpenCV, and Pillow libraries. Visualization
of attention maps and result plots was generated using Seaborn
and Matplotlib libraries (specific version information for each
library can befound inthe GitHub repository). Thetraining and
experiments were run on a computing system with a pair of
NVIDIA A100 graphics processing units (80 GB memory each)
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and an Intel Xeon Gold 6338N central processing unit (128
cores, 2.20 GHz) with 512 GB of RAM. Additionally, because
the original implementation of attention induction was not
publicly available, we reimplemented the method based on the
descriptions provided in the paper. Our implementation is
available to facilitate reproducibility [26].

For optimization, we used the Adam optimizer with alearning

rate of 2x10~ and a weight decay of 1x107°. We trained each
model for up to 200 epochs using an early stopping criterion:
if the validation loss did not improve for 7 consecutive epochs
(after aninitial 20-epoch warmup period), training was stopped.
In practice, most models converged well before 200 epochs
under this criterion. For all MIL benchmarks, the ResNet-50
backbonewas frozen during training. Crucially, we used afrozen
ResNet-50 backbonefor all MIL benchmarks. Although methods
such as DS-MIL and HIPT typically leverage self-supervised
pretraining or hierarchical encoders, we used ResNet-50 asthe
feature extractor for this experiment. This ensured a direct
comparison of the MIL aggregation strategies themselves,
isolating their performance from the variations in pretrained
feature representations.

We set the rank loss hyperparameters as follows:. the scaling
factor =1 and margin m=21in the pairwise probability formula,
and therank lossweight A=1. In each training iteration, to limit
memory use and ensure computational efficiency when
computing the rank loss, we randomly sampled up to 1024
positive and 1024 negative patches per slide. The attention
threshold T was set to 1.

Ethical Consider ations

This study used both publicly available deidentified datasets
(Camelyon16 and DigestPath2019) and aprivate clinical dataset
(SMF-stomach). The Camelyon16 and DigestPath2019 datasets
consist of fully deidentified WS, publicly released for research
under their respective challenge licenses, therefore, no
institutional review board (IRB) approval or informed consent
was required for their use. For the SMF-stomach dataset, this
study was approved by the IRB of the Seegene Medical
Foundation (SMF-1RB-2024-015). Given the anonymous and
deidentified nature of the retrospective pathological images,
informed consent was not required.

Results

M odel Performance

We compared rank induction against 6 representative MIL
benchmarks: AB-MIL, attention induction, CLAM, DS-MIL,
and HIPT, regarding dide-level classification performance. On
Camelyon16, rank induction achieved an AUROC of 0.839 (SD
0.050) and an AUPRC of 0.850 (SD 0.042), outperforming all
baseline methods with consistently low variance (Table 2). We
observed similar performance trends on the DigestPath2019
dataset. Although al models performed well dueto the dataset’s
relative simplicity, rank induction achieved the best results
(AUROC=0.995; AUPRC=0.993) with stable variance. On the
SMF-stomach dataset, rank induction demonstrated the best
performance, achieving an AUROC of 0.875 (SD 0.008) and
an AUPRC of 0.937 (SD 0.006). Due to space constraints, the
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full accuracy comparison for all datasets is reported in
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Multimedia Appendix 2.

Table 2. Comparison of model performance across methods on 2 public datasets and an in-house dataset.

Model Camelyon16 DigestPath2019 SMF2-stomach
AU ROCb, mean (SD) AUPRCC, mean AUROC, mean AUPRC, mean (SD) AUROC, AUPRC, mean (SD)
(SD) (SD) mean (SD)
AB-MILY 0.741 (0.146) 0.730 (0.183) 0.993 (0.003) 0.990 (0.005) 0.864 (0.031) 0.928 (0.016)
?ttenti oninduc- 0.742 (O. 142) 0.727 (0. 179) 0.994 (0.002) 0.990 (0.003) 0.868 (0.031)9 0.930 (0.016)9
on
CLAM-SB' 0.732 (0.137) 0.700 (0.179) 0.977 (0.019) 0.965 (0.026) 0.837(0.023) 0.919 (0.013)
CLAM-MBY 0.794 (0.128)° 0.767 (0.168)° 0.976 (0.019) 0.963 (0.026) 0.838 (0.032) 0.916 (0.025)
DS-MIL" 0.690 (0.170) 0.666 (0.223) 0.995 (0.004)® 0.993 (0.006)° 0.839(0.031) 0.915 (0.016)
HIPT' 0.483 (0.103) 0.416 (0.136) 0.962 (0.058) 0.947 (0.091) 0.676 (0.064) 0.751 (0.060)
Rank induction 9,839 (0.050)*!'™ 0,850 (0.042) " 0.995(0.002)* 0993 (0.002)/%  0875(0.008 (937 (0.006)!"™ NOP
o,p I,m, o,p l,m,n,p I,mn, p ) l.m. nop

83MF: Seegene Medical Foundation.

BAUROC: area under the receiver operating characteristic curve.
CAUPRC: area under the precision-recal| curve.

dAB-MIL: attention-based multiple instance learning.
€Second-best resuilt.

fCLAM-SB: clusteri ng-constrained attention multiple instance learning, single-branch.
9CLAM-MB: clustering-constrained attention multiple instance learning, multibranch.

PDSMIL: dual-stream multi ple instance learning.
IHIPT: hierarchical image pyramid transformer.
Iltalicization indicates the best result.

Kp<.05 vs attention-based multi pleinstance learning.
|P<.05 vs attention induction.

Mp<.,05 vs clustering-constrained attention multiple instance learning, single-branch.
"P<.05 vs clustering-constrained attention multiple instance learning, multibranch.

%P<,05 vs dual-stream multiple instance learning.
PP<.05 vs hierarchical image pyramid transformer.

Data-Efficient Learning With Expert Annotation

To investigate data-efficient training with expert annotation
under low-data regimes reflecting real-world constraints, we
assessed model performance on Camelyonl6 by varying the
proportion of training data (Figure 2). With only 20% of the
dlides, all methods achieved AUROC scoresin the range of 0.4
to 0.6, and statistically significant differences were observed
between rank induction and the other benchmarks. Among them,

https://medinform.jmir.org/2026/1/e84417

rank induction achieved the highest AUROC. At 40% and 60%
of the training data size, rank induction significantly
outperformed other MIL methods. When trained with 80% of
the data, rank induction achieved an AUROC of 0.786 (SD
0.042), surpassing HIPT (AUROC=0.464, SD 0.076), DS-MIL
(AUROC=0.709, SD 0.154), AB-MIL (AUROC=0.707, SD
0.186), attention induction (AUROC=0.714, SD 0.193),
CLAM-SB (AUROC=0.721, SD 0.180), and CLAM-MB
(AUROC=0.847, SD 0.042).
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Figure 2. Areaunder the receiver operating characteristic curve (AUROC) performance across different training set sampling ratios on Camelyon16.
AB-MIL: attention-based multiple instance learning; DS-MIL: dua-stream multiple instance learning; CLAM-MB: clustering-constrained attention
multipleinstance learning, multibranch; CLAM-SB: clustering-constrained attention multipleinstance learning, single-branch; HIPT: hierarchical image
pyramid transformer. Asterisksindicate statistical significance based on the Mann-Whitney U test: * P<.05, ** P<.001, ***P<.0001, and ****P<.00001.
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Annotation Granularity

We evauated model robustness to noisy or imprecise
annotations by progressively padding the pathologist-drawn
tumor regions on Camelyonl6 to simulate coarse lesion
markings. Both rank induction and attention induction were
trained under each noise condition. With the original annotations
(O-pixel padding), rank induction achieved an AUROC of 0.839
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(SD 0.050). Even at the highest padding level, its performance
declined only dlightly to an AUROC of 0.823 (SD 0.050; Figure
3). In comparison, attention induction dropped from an AUROC
of 0.742 (SD 0.142) to 0.723 (SD 0.134) as annotation noise
increased. Across al levels of annotation coarseness, rank
induction consistently outperformed attention induction,
although the differences were not statistically significant at
some padding levels.
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Figure 3. Annotation granularity experiment on Camelyon16. (A) Comparison of dide-level classification performance (area under the receiver
operating characteristic curve [AUROC]) between attention induction and rank induction. (B) Representative visualization of the artificially expanded
annotations used in the experiment. The thin inner red line indicates the original precise lesion annotation provided by the pathologist (ground truth),
while the bold outer red line represents the artificially expanded annotation boundary simulating coarser supervision granularity.
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To simulate real-world scenariosin which annotating all WSIs
isinfeasible, we evaluated model performance by varying the
proportion of annotated positive WSIsin the training set. Asa
baseline (0% annotation), AB-MIL achieved an average
AUROC of 0.741 (SD 0.146; Figure 4). With only 10% (9/89)
of positive WSIs annotated in the train dataset, rank induction
boosted the performance to an average AUROC of 0.782 (SD
0.070). Increasing the annotation coverage to 20% (18/89) raised
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the AUROC to 0.807 (SD 0.070), while using al available
positive WSIs (N=89) yielded a final AUROC of 0.839 (SD
0.050). Notably, rank induction achieved near-saturated
performance with 20% of the annotated data, demonstrating
high data efficiency. Moreover, theintroduction of even minimal
annotation significantly reduced performance variance compared
to the unannotated baseline. The performance curve began to
plateau beyond approximately 20% annotation coverage,
indicating diminishing returns in AUROC gains, while
maintaining low variability.
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Figure 4. Impact of annotation fraction on area under the receiver operating characteristic curve (AUROC). WSI: whole slide image.
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Ablation Test

The impact of varying the attention threshold T on model
performance and attention distribution is presented in Table 3.

AsT increased from 0to 2, both AUROC and AUPRC improved
steadily, accompanied by a marked reduction in the average
sum of attention assigned to nonlesion patches.

Table 3. Effect of attention threshold T on whole slide image (WSI) classification performance and sum of attention weight for nonlesion patches.

Threshold Test dataset (n=129) Positive WSI in the test dataset (n=49;
sum of nonlesion attention), mean (SD)
AUROC? AUPRCP
0 0.830 0.846 0.465 (0.420)
0.25 0.853 0.878 0.411 (0.434)
0.5 0.869 0.881 0.362 (0.423)
1 0.894 0.905 0.269 (0.387)
2 0.916 0.922 0.178 (0.3%4)
5 0.909 0.914 0.105 (0.339)

8AUROC: area under the receiver operating characteristic curve.
BAUPRC: area under the precision-recall curve.

With no thresholding (T=0) or low thresholds (T<1, where
attention distributions remain nearly uniform), the AUROC
remained relatively low. This suggests that weakly attended
nonlesion patches diluted the side-level representation. The
best performance was observed at T=2 (AUROC=0.916;
AUPRC=0.922), indicating that moderate thresholding
effectively suppresses noise-like, low-value attention weights
while preserving discriminative focus. Excessively high
thresholds (eg, T=5) yielded a dlight decline, reflecting an
optimal balance near T=2.

Attention Localization and Qualitative Analysis

To evaluate the effect of rank induction on attention localization,
we examined whether the attention weights were concentrated
within expert-annotated regions. Across al 3 locaization

https://medinform.jmir.org/2026/1/e84417

RenderX

metrics, rank induction consistently demonstrated greater focus
on the annotated areas compared to other MIL methods. At a=5,
AB-MIL, attention induction, and rank induction achieved 10U
scores of 0.029, 0.023, and 0.031 and Dice scores of 0.056,
0.045, and 0.059, respectively. When a increased to 75, the
performance gap between rank induction and the baseline
models became more pronounced (Figures 5A and 5B). A
similar trend was observed in pointing game accuracy (Figure
5C). Qualitatively, both AB-MIL and attention induction
produced noisy attention maps that highlighted not only tumor
regions but also large areas of normal tissue, resulting in
frequent false positives. In contrast, rank induction generated
sharp and well-localized attention maps, accurately delineating
lesion areas with minima off-target activation—closely
matching the ground truth annotations. This distinct separation
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between tumor and normal regions explains rank induction’s  predictions (Figure 6).
superior performance and enhances the interpretability of its

Figure 5. Attention localization performance of attention-based multiple instance learning (AB-MIL), attention induction, and rank induction. (A)
Intersection over union (IoU) score according to the top a% of patches. (B) Dice score according to the top a% of patches. (C) Average pointing game
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Discussion

Principal Findings

In this work, we present rank induction, the first method to
integrate MIL with expert annotations using pairwise rank
constraints. By enforcing aranking loss that encourages higher
attention scores for annotated patches than for nonannotated
ones, our approach effectively strengthensthe weak supervision
signal inherent to MIL frameworks.

We validated rank induction through comprehensive
experiments on 2 public datasets and 1 in-house dataset,
covering 5 key scenarios: full-data classification, low-data
regimes, varying annotation granularity, subset annotation
settings, and qualitative visualization. Across al settings, rank
induction consistently outperformed baseline methods, including
pseudo-labeling approaches and attention induction, while
producing more faithful and interpretable attention heat maps.

Notably, the proposed ranking mechanism is model-agnostic
and can be used as a versatile module within other MIL
architectures. As demonstrated in Multimedia Appendix 3,
integrating rank induction into existing methods such asDS-MIL
and HIPT consistently improved their performance. In our main
experiments, these baseline models (DS-MIL and HIPT)
exhibited lower performance than that reported in their original
studies. This discrepancy arises because we used a standard
ImageNet-pretrained ResNet-50 backbone across al modelsto
ensure a fair comparison of the MIL aggregation strategies
themselves, rather than relying on the self-supervised pretraining
typicaly required by those methods. However, even under this
constrained setting, incorporating rank induction significantly
boosted their classification accuracy, demonstrating the
robustness and generalizability of our ranking-based supervision.

Ultimately, these performance improvements stem from bridging
weak and strong supervision through informative pairwise
constraints that approximate expert guidance. Rank induction
is grounded in a simple yet clinically intuitive assumption:
models should prioritize annotated regions over nonannotated
ones. This inductive bias aigns naturally with domain
knowledge in pathology, establishing rank induction as an
effective and practical solution for real-world applications.

Real-World Application With Expert Annotations

The pairwise ranking approach in rank induction addresses key
challenges associated with expert annotations in real-world
settings. In practice, tumor regions often exhibit irregular and
heterogeneous morphology with poorly defined boundaries,
making precise annotations difficult. Consequently, annotations
arefrequently coarse or incomplete. Despitethis, rank induction
maintained robust classification performance even with noisy
annotations (Figure 3). This resilience likely stems from the
pairwise training mechanism: although some compari sons may
involveincorrectly labeled patches, most pairwise rel ationships
remain valid, enabling the model to suppress noise and learn
effectively.

Moreover, due to time and resource limitations, only a subset
of positive WSIs can typically be annotated in clinical
workflows. In such scenarios, extracting maximum value from

https://medinform.jmir.org/2026/1/e84417
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limited expert input is critical. Unlike attention induction, which
relies on assigning exact attention weightsto individual patches,
rank induction leverages a larger number of patch-pair
comparisonsfromthevalid pair set P, which grows quadratically
with the number of annotated patches. This design allows the
model to achieve near-saturated performance even with partial
annotations (Figure 4).

Although pseudolabeling offers an alternative when expert
annotations are unavailable, as seenin methods such asCLAM,
it introduces uncertainty by relying on the model’s own
predictions. These pseudolabels are inherently noisier than
expert supervision and can lead to cascading errors. In contrast,
rank induction avoids this risk by grounding supervision in
verified expert annotations, leading to more stable and accurate
dide-level predictions, especially in low-data or noisy-label
conditions.

Comparison of Fully Supervised L earning and Rank
Induction

In scenarios where exhaustive patch-level annotations are
availablefor all WSIs, fully supervised learning remainsastrong
baseline. Using the same training settings as our MIL models,
a patch-level convolutional neural network with a fine-tuned
ResNet-50 backbone and max-pooling aggregation achieved an
AUROC of 0.892 on Camelyon16. This result outperformed
the AUROC of 0.839 achieved by rank induction, which utilizes
a frozen backbone and MIL-based aggregation. This result
illustrates the upper bound of fully supervised performance
given complete expert annotations and domain-specific
fine-tuning (Multimedia Appendix 4).

However, in redlistic clinica environments, exhaustive
annotationisrarely feasible. When only 10% (9/89) of positive
WSls were annotated in the train dataset, the fully supervised
model trained on this subset achieved an AUROC of 0.729. In
contrast, rank induction, using the same 10% of patch-level
annotations and leveraging dide-level labelsfrom theremaining
90%, achieved a higher AUROC of 0.775. The key difference
lies in how each method handles unannotated dides. Fully
supervised model sare limited to the annotated subset and cannot
benefit from weak labels. Rank induction, by integrating both
patch- and slide-level supervision through pairwise ranking
constraints, makes effective use of al available data, even with
sparse annotations.

Thesefindings highlight aclear trade-off: whilefully supervised
learning performs best under ideal, fully annotated conditions,
rank induction offers a more practical and annotation-efficient
aternative. Its ability to generalize from partial supervision
makes it especially suitable for real-world digital pathology
applications, where annotations are incomplete or expensive.

Limitations

Our study has several limitations. First, although we validated
our method on 3 datasets, including 1 in-house dataset
(SMF-stomach), the diversity of organs and pathol ogiesremains
limited. Specifically, the SMF-stomach dataset was collected
from asingle ingtitution, which may introduce biases related to
specific staining protocols or scanner characteristics. To fully
assess cross-domain robustness, future work should include
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evaluation on larger, multicenter cohorts with diverse scanners.
Nonetheless, the inclusion of Camelyonl16 partially addresses
this concern, as it contains slides from multiple medical

Kimet al

efficiency and model performance, outperforming traditional
MIL and pseudolabeling approaches, particularly in low-data
or noisy-label settings.

ingtitutions, providing evidence of generalization. Although fully supervised leaming may yield higher accuracy

when exhaustive annotations are avail able, rank induction offers
a more scalable and annotation-efficient alternative for
real-world use. Its robustness with limited annotations and its
ability to highlight diagnostically relevant regions underscore
the potential of rank-based supervision to improve both model
interpretability and generalizability across diverse clinical
environments.

Conclusions

In summary, rank induction provides a practical and effective
solution for improving dide-level classification in digital
pathology by bridging weak and strong supervision viapairwise
ranking constraints. By leveraging only sparse expert
annotations, it achieves a strong balance between annotation
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AUROC: areaunder the receiver operating characteristic curve

CLAM: clustering-constrained attention multiple instance learning

CLAM-MB: clustering-constrained attention multiple instance learning, multibranch
CLAM-SB: clustering-constrained attention multiple instance learning, single-branch
DS-MIL: dual-stream multiple instance learning

HIPT: hierarchical image pyramid transformer

loU: intersection over union

IRB: ingtitutional review board

MIL: multipleinstance learning

SMF-stomach: Seegene Medical Foundation-stomach

WSI: whole dideimage
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